Biblio
Advanced Persistent Threats (APTs) are a new breed of internet based smart threats, which can go undetected with the existing state of-the-art internet traffic monitoring and protection systems. With the evolution of internet and cloud computing, a new generation of smart APT attacks has also evolved and signature based threat detection systems are proving to be futile and insufficient. One of the essential strategies in detecting APTs is to continuously monitor and analyze various features of a TCP/IP connection, such as the number of transferred packets, the total count of the bytes exchanged, the duration of the TCP/IP connections, and details of the number of packet flows. The current threat detection approaches make extensive use of machine learning algorithms that utilize statistical and behavioral knowledge of the traffic. However, the performance of these algorithms is far from satisfactory in terms of reducing false negatives and false positives simultaneously. Mostly, current algorithms focus on reducing false positives, only. This paper presents a fractal based anomaly classification mechanism, with the goal of reducing both false positives and false negatives, simultaneously. A comparison of the proposed fractal based method with a traditional Euclidean based machine learning algorithm (k-NN) shows that the proposed method significantly outperforms the traditional approach by reducing false positive and false negative rates, simultaneously, while improving the overall classification rates.
Intrusive multi-step attacks, such as Advanced Persistent Threat (APT) attacks, have plagued enterprises with significant financial losses and are the top reason for enterprises to increase their security budgets. Since these attacks are sophisticated and stealthy, they can remain undetected for years if individual steps are buried in background "noise." Thus, enterprises are seeking solutions to "connect the suspicious dots" across multiple activities. This requires ubiquitous system auditing for long periods of time, which in turn causes overwhelmingly large amount of system audit events. Given a limited system budget, how to efficiently handle ever-increasing system audit logs is a great challenge. This paper proposes a new approach that exploits the dependency among system events to reduce the number of log entries while still supporting high-quality forensic analysis. In particular, we first propose an aggregation algorithm that preserves the dependency of events during data reduction to ensure the high quality of forensic analysis. Then we propose an aggressive reduction algorithm and exploit domain knowledge for further data reduction. To validate the efficacy of our proposed approach, we conduct a comprehensive evaluation on real-world auditing systems using log traces of more than one month. Our evaluation results demonstrate that our approach can significantly reduce the size of system logs and improve the efficiency of forensic analysis without losing accuracy.
Given a stream of heterogeneous graphs containing different types of nodes and edges, how can we spot anomalous ones in real-time while consuming bounded memory? This problem is motivated by and generalizes from its application in security to host-level advanced persistent threat (APT) detection. We propose StreamSpot, a clustering based anomaly detection approach that addresses challenges in two key fronts: (1) heterogeneity, and (2) streaming nature. We introduce a new similarity function for heterogeneous graphs that compares two graphs based on their relative frequency of local substructures, represented as short strings. This function lends itself to a vector representation of a graph, which is (a) fast to compute, and (b) amenable to a sketched version with bounded size that preserves similarity. StreamSpot exhibits desirable properties that a streaming application requires: it is (i) fully-streaming; processing the stream one edge at a time as it arrives, (ii) memory-efficient; requiring constant space for the sketches and the clustering, (iii) fast; taking constant time to update the graph sketches and the cluster summaries that can process over 100,000 edges per second, and (iv) online; scoring and flagging anomalies in real time. Experiments on datasets containing simulated system-call flow graphs from normal browser activity and various attack scenarios (ground truth) show that StreamSpot is high-performance; achieving above 95% detection accuracy with small delay, as well as competitive time and memory usage.
We present a novel Cyber Security analytics framework. We demonstrate a comprehensive cyber security monitoring system to construct cyber security correlated events with feature selection to anticipate behaviour based on various sensors.
Advanced targeted cyber attacks often rely on reconnaissance missions to gather information about potential targets and their location in a networked environment to identify vulnerabilities which can be exploited for further attack maneuvers. Advanced network scanning techniques are often used for this purpose and are automatically executed by malware infected hosts. In this paper we formally define network deception to defend reconnaissance and develop RDS (Reconnaissance Deception System), which is based on SDN (Software Defined Networking), to achieve deception by simulating virtual network topologies. Our system thwarts network reconnaissance by delaying the scanning techniques of adversaries and invalidating their collected information, while minimizing the performance impact on benign network traffic. We introduce approaches to defend malicious network discovery and reconnaissance in computer networks, which are required for targeted cyber attacks such as Advanced Persistent Threats (APT). We show, that our system is able to invalidate an attackers information, delay the process of finding vulnerable hosts and identify the source of adversarial reconnaissance within a network, while only causing a minuscule performance overhead of 0.2 milliseconds per packet flow on average.
Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.
Denial-of-Service (DoS) attacks pose a threat to any service provider on the internet. While traditional DoS flooding attacks require the attacker to control at least as much resources as the service provider in order to be effective, so-called low-rate DoS attacks can exploit weaknesses in careless design to effectively deny a service using minimal amounts of network traffic. This paper investigates one such weakness found within version 2.2 of the popular Apache HTTP Server software. The weakness concerns how the server handles the persistent connection feature in HTTP 1.1. An attack simulator exploiting this weakness has been developed and shown to be effective. The attack was then studied with spectral analysis for the purpose of examining how well the attack could be detected. Similar to other papers on spectral analysis of low-rate DoS attacks, the results show that disproportionate amounts of energy in the lower frequencies can be detected when the attack is present. However, by randomizing the attack pattern, an attacker can efficiently reduce this disproportion to a degree where it might be impossible to correctly identify an attack in a real world scenario.
Cyber-physical systems (CPSs), due to their direct influence on the physical world, have to meet extended security and dependability requirements. This is particularly true for CPS that operate in close proximity to humans or that control resources that, when tampered with, put all our lives at stake. In this paper, we review the challenges and some early solutions that arise at the architectural and operating-system level when we require cyber-physical systems and CPS infrastructure to withstand advanced and persistent threats. We found that although some of the challenges we identified are already matched by rudimentary solutions, further research is required to ensure sustainable and dependable operation of physically exposed CPS infrastructure and, more importantly, to guarantee graceful degradation in case of malfunction or attack.
In our previous work [1], we presented a study of using performance escalation to automatic detect Distributed Denial of Service (DDoS) types of attacks. We propose to enhance the work of security threat detection by using mobile phones as the detector to identify outliers of normal traffic patterns as threats. The mobile solution makes detection portable to any services. This paper also shows that the same detection method works for advanced persistent threats.
A fundamental drawback of current anomaly detection systems (ADSs) is the ability of a skilled attacker to evade detection. This is due to the flawed assumption that an attacker does not have any information about an ADS. Advanced persistent threats that are capable of monitoring network behavior can always estimate some information about ADSs which makes these ADSs susceptible to evasion attacks. Hence in this paper, we first assume the role of an attacker to launch evasion attacks on anomaly detection systems. We show that the ADSs can be completely paralyzed by parameter estimation attacks. We then present a mathematical model to measure evasion margin with the aim to understand the science of evasion due to ADS design. Finally, to minimize the evasion margin, we propose a key-based randomization scheme for existing ADSs and discuss its robustness against evasion attacks. Case studies are presented to illustrate the design methodology and extensive experimentation is performed to corroborate the results.
Today ICT networks are the economy's vital backbone. While their complexity continuously evolves, sophisticated and targeted cyber attacks such as Advanced Persistent Threats (APTs) become increasingly fatal for organizations. Numerous highly developed Intrusion Detection Systems (IDSs) promise to detect certain characteristics of APTs, but no mechanism which allows to rate, compare and evaluate them with respect to specific customer infrastructures is currently available. In this paper, we present BAESE, a system which enables vendor independent and objective rating and comparison of IDSs based on small sets of customer network data.
Cyber-attacks have been evolved in a way to be more sophisticated by employing combinations of attack methodologies with greater impacts. For instance, Advanced Persistent Threats (APTs) employ a set of stealthy hacking processes running over a long period of time, making it much hard to detect. With this trend, the importance of big-data security analytics has taken greater attention since identifying such latest attacks requires large-scale data processing and analysis. In this paper, we present SEAS-MR (Security Event Aggregation System over MapReduce) that facilitates scalable security event aggregation for comprehensive situation analysis. The introduced system provides the following three core functions: (i) periodic aggregation, (ii) on-demand aggregation, and (iii) query support for effective analysis. We describe our design and implementation of the system over MapReduce and high-level query languages, and report our experimental results collected through extensive settings on a Hadoop cluster for performance evaluation and design impacts.
Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.
Ensuring system survivability in the wake of advanced persistent threats is a big challenge that the security community is facing to ensure critical infrastructure protection. In this paper, we define metrics and models for the assessment of coordinated massive malware campaigns targeting critical infrastructure sectors. First, we develop an analytical model that allows us to capture the effect of neighborhood on different metrics (infection probability and contagion probability). Then, we assess the impact of putting operational but possibly infected nodes into quarantine. Finally, we study the implications of scanning nodes for early detection of malware (e.g., worms), accounting for false positives and false negatives. Evaluating our methodology using a small four-node topology, we find that malware infections can be effectively contained by using quarantine and appropriate rates of scanning for soft impacts.
Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.
Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.
Advanced persistent threat (APT) is becoming a major threat to cyber security. As APT attacks are often launched by well funded entities that are persistent and stealthy in achieving their goals, they are highly challenging to combat in a cost-effective way. The situation becomes even worse when a sophisticated attacker is further assisted by an insider with privileged access to the inside information. Although stealthy attacks and insider threats have been considered separately in previous works, the coupling of the two is not well understood. As both types of threats are incentive driven, game theory provides a proper tool to understand the fundamental tradeoffs involved. In this paper, we propose the first three-player attacker-defender-insider game to model the strategic interactions among the three parties. Our game extends the two-player FlipIt game model for stealthy takeover by introducing an insider that can trade information to the attacker for a profit. We characterize the subgame perfect equilibria of the game with the defender as the leader and the attacker and the insider as the followers, under two different information trading processes. We make various observations and discuss approaches for achieving more efficient defense in the face of both APT and insider threats.
During an advanced persistent threat (APT), an attacker group usually establish more than one C&C server and these C&C servers will change their domain names and corresponding IP addresses over time to be unseen by anti-virus software or intrusion prevention systems. For this reason, discovering and catching C&C sites becomes a big challenge in information security. Based on our observations and deductions, a malware tends to contain a fixed user agent string, and the connection behaviors generated by a malware is different from that by a benign service or a normal user. This paper proposed a new method comprising filtering and clustering methods to detect C&C servers with a relatively higher coverage rate. The experiments revealed that the proposed method can successfully detect C&C Servers, and the can provide an important clue for detecting APT.
Recently personal information due to the APT attack, the economic damage and leakage of confidential information is a serious social problem, a great deal of research has been done to solve this problem. APT attacks are threatening traditional hacking techniques as well as to increase the success rate of attacks using sophisticated attack techniques such attacks Zero-Day vulnerability in order to avoid detection techniques and state-of-the-art security because it uses a combination of intelligence. In this paper, the malicious code is designed to detect APT attack based on APT attack behavior ontology that occur during the operation on the target system, it uses intelligent APT attack than to define inference rules can be inferred about malicious attack behavior to propose a method that can be detected.
Recent years have seen the rise of sophisticated attacks including advanced persistent threats (APT) which pose severe risks to organizations and governments. Additionally, new malware strains appear at a higher rate than ever before. Since many of these malware evade existing security products, traditional defenses deployed by enterprises today often fail at detecting infections at an early stage. We address the problem of detecting early-stage APT infection by proposing a new framework based on belief propagation inspired from graph theory. We demonstrate that our techniques perform well on two large datasets. We achieve high accuracy on two months of DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of web proxy logs collected at the border of a large enterprise and identify hundreds of malicious domains overlooked by state-of-the-art security products.
Advanced Persistent Threat (APT) is a complex (Advanced) cyber-attack (Threat) against specific targets over long periods of time (Persistent) carried out by nation states or terrorist groups with highly sophisticated levels of expertise to establish entries into organizations, which are critical to a country's socio-economic status. The key identifier in such persistent threats is that patterns are long term, could be high priority, and occur consistently over a period of time. This paper focuses on identifying persistent threat patterns in network data, particularly data collected from Intrusion Detection Systems. We utilize Association Rule Mining (ARM) to detect persistent threat patterns on network data. We identify potential persistent threat patterns, which are frequent but at the same time unusual as compared with the other frequent patterns.
Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.
The number of detected and analyzed Advanced Persistent Threat (APT) campaigns increased over the last years. Two of the main objectives of such campaigns are to maintain long-term access to the environment of the target and to stay undetected. To achieve these goals the attackers use sophisticated and customized techniques for the lateral movement, to ensure that these activities are not detected by existing security systems. During an investigation of an APT campaign all stages of it are relevant to clarify important details like the initial infection vector or the compromised systems and credentials. Most of the currently used approaches, which are utilized within security systems, are not able to detect the different stages of a complex attack and therefore a comprehensive security investigation is needed. In this paper we describe a concept for a Security Investigation Framework (SIF) that supports the analysis and the tracing of multi-stage APTs. The concept includes different automatic and semi-automatic approaches that support the investigation of such attacks. Furthermore, the framework leverages different information sources, like log files and details from forensic investigations and malware analyses, to give a comprehensive overview of the different stages of an attack. The overall objective of the SIF is to improve the efficiency of investigations and reveal undetected details of an attack.
The modern malware poses serious security threats because of its evolved capability of using staged and persistent attack while remaining undetected over a long period of time to perform a number of malicious activities. The challenge for malicious actors is to gain initial control of the victim's machine by bypassing all the security controls. The most favored bait often used by attackers is to deceive users through a trusting or interesting email containing a malicious attachment or a malicious link. To make the email credible and interesting the cybercriminals often perform reconnaissance activities to find background information on the potential target. To this end, the value of information found on the discarded or stolen storage devices is often underestimated or ignored. In this paper, we present the partial results of analysis of one such hard disk that was purchased from the open market. The data found on the disk contained highly sensitive personal and organizational data. The results from the case study will be useful in not only understanding the involved risk but also creating awareness of related threats.
What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.