Meijaard, Yoram, Meiler, Peter-Paul, Allodi, Luca.
2021.
Modelling Disruptive APTs targeting Critical Infrastructure using Military Theory. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :178–190.
Disruptive Advanced Persistent Threats (D-APTs) are a new sophisticated class of cyberattacks targeting critical infrastructures. Whereas regular APTs are well-described in the literature, no existing APT kill chain model incorporates the disruptive actions of D-APTs and can be used to represent DAPTs in data. To this aim, the contribution of this paper is twofold: first, we review the evolution of existing APT kill chain models. Second, we present a novel D-APT model based on existing ATP models and military theory. The model describes the strategic objective setting, the operational kill chain and the tactics of the attacker, as well as the defender’s critical infrastructure, processes and societal function.
Kriaa, Siwar, Chaabane, Yahia.
2021.
SecKG: Leveraging attack detection and prediction using knowledge graphs. 2021 12th International Conference on Information and Communication Systems (ICICS). :112–119.
Advanced persistent threats targeting sensitive corporations, are becoming today stealthier and more complex, coordinating different attacks steps and lateral movements, and trying to stay undetected for long time. Classical security solutions that rely on signature-based detection can be easily thwarted by malware using obfuscation and encryption techniques. More recent solutions are using machine learning approaches for detecting outliers. Nevertheless, the majority of them reason on tabular unstructured data which can lead to missing obvious conclusions. We propose in this paper a novel approach that leverages a combination of both knowledge graphs and machine learning techniques to detect and predict attacks. Using Cyber Threat Intelligence (CTI), we built a knowledge graph that processes event logs in order to not only detect attack techniques, but also learn how to predict them.
Silva, Douglas Simões, Graczyk, Rafal, Decouchant, Jérémie, Völp, Marcus, Esteves-Verissimo, Paulo.
2021.
Threat Adaptive Byzantine Fault Tolerant State-Machine Replication. 2021 40th International Symposium on Reliable Distributed Systems (SRDS). :78–87.
Critical infrastructures have to withstand advanced and persistent threats, which can be addressed using Byzantine fault tolerant state-machine replication (BFT-SMR). In practice, unattended cyberdefense systems rely on threat level detectors that synchronously inform them of changing threat levels. However, to have a BFT-SMR protocol operate unattended, the state-of-the-art is still to configure them to withstand the highest possible number of faulty replicas \$f\$ they might encounter, which limits their performance, or to make the strong assumption that a trusted external reconfiguration service is available, which introduces a single point of failure. In this work, we present ThreatAdaptive the first BFT-SMR protocol that is automatically strengthened or optimized by its replicas in reaction to threat level changes. We first determine under which conditions replicas can safely reconfigure a BFT-SMR system, i.e., adapt the number of replicas \$n\$ and the fault threshold \$f\$ so as to outpace an adversary. Since replicas typically communicate with each other using an asynchronous network they cannot rely on consensus to decide how the system should be reconfigured. ThreatAdaptive avoids this pitfall by proactively preparing the reconfiguration that may be triggered by an increasing threat when it optimizes its performance. Our evaluation shows that ThreatAdaptive can meet the latency and throughput of BFT baselines configured statically for a particular level of threat, and adapt 30% faster than previous methods, which make stronger assumptions to provide safety.
Hong, Seoung-Pyo, Lim, Chae-Ho, lee, hoon jae.
2021.
APT attack response system through AM-HIDS. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :271–274.
In this paper, an effective Advanced Persistent Threat (APT) attack response system was proposed. Reference to the NIST Cyber Security Framework (CRF) was made to present the most cost-effective measures. It has developed a system that detects and responds to real-time AM-HIDS (Anti Malware Host Intrusion Detection System) that monitors abnormal change SW of PCs as a prevention of APT. It has proved that the best government-run security measures are possible to provide an excellent cost-effectiveness environment to prevent APT attacks.
Yang, SU.
2021.
An Approach on Attack Path Prediction Modeling Based on Game Theory. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2604–2608.
Considering the lack of theoretical analysis for distributed network under APT (advanced persistent threat) attacks, a game model was proposed to solve the problem based on APT attack path. Firstly, this paper analyzed the attack paths of attackers and proposed the defensive framework of network security by analyzing the characteristics of the APT attack and the distributed network structure. Secondly, OAPG(an attack path prediction model oriented to APT) was established from the value both the attacker and the defender based on game theory, besides, this paper calculated the game equilibrium and generated the maximum revenue path of the attacker, and then put forward the best defensive strategy for defender. Finally, this paper validated the model by an instance of APT attack, the calculated results showed that the model can analyze the attacker and defender from the attack path, and can provide a reasonable defense scheme for organizations that use distributed networks.
Umar, Sani, Felemban, Muhamad, Osais, Yahya.
2021.
Advanced Persistent False Data Injection Attacks Against Optimal Power Flow in Power Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
Recently, cyber security in power systems has captured significant interest. This is because the world has seen a surge in cyber attacks on power systems. One of the prolific cyber attacks in modern power systems are False Data Injection Attacks (FDIA). In this paper, we analyzed the impact of FDIA on the operation cost of power systems. Also, we introduced a novel Advanced Persistent Threat (APT) based attack strategy that maximizes the operating costs when attacking specific nodes in the system. We model the attack strategy using an optimization problem and use metaheuristics algorithms to solve the optimization problem and execute the attack. We have found that our attacks can increase the power generation cost by up to 15.6%, 60.12%, and 74.02% on the IEEE 6-Bus systems, 30-Bus systems, and 118-Bus systems, respectively, as compared to normal operation.
D'Agostino, Jack, Kul, Gokhan.
2021.
Toward Pinpointing Data Leakage from Advanced Persistent Threats. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :157–162.
Advanced Persistent Threats (APT) consist of most skillful hackers who employ sophisticated techniques to stealthily gain unauthorized access to private networks and exfiltrate sensitive data. When their existence is discovered, organizations - if they can sustain business continuity - mostly have to perform forensics activities to assess the damage of the attack and discover the extent of sensitive data leakage. In this paper, we construct a novel framework to pinpoint sensitive data that may have been leaked in such an attack. Our framework consists of creating baseline fingerprints for each workstation for setting normal activity, and we consider the change in the behavior of the network overall. We compare the accused fingerprint with sensitive database information by utilizing both Levenstein distance and TF-IDF/cosine similarity resulting in a similarity percentage. This allows us to pinpoint what part of data was exfiltrated by the perpetrators, where in the network the data originated, and if that data is sensitive to the private company's network. We then perform feasibility experiments to show that even these simple methods are feasible to run on a network representative of a mid-size business.
Liu, Jieling, Wang, Zhiliang, Yang, Jiahai, Wang, Bo, He, Lin, Song, Guanglei, Liu, Xinran.
2021.
Deception Maze: A Stackelberg Game-Theoretic Defense Mechanism for Intranet Threats. ICC 2021 - IEEE International Conference on Communications. :1–6.
The intranets in modern organizations are facing severe data breaches and critical resource misuses. By reusing user credentials from compromised systems, Advanced Persistent Threat (APT) attackers can move laterally within the internal network. A promising new approach called deception technology makes the network administrator (i.e., defender) able to deploy decoys to deceive the attacker in the intranet and trap him into a honeypot. Then the defender ought to reasonably allocate decoys to potentially insecure hosts. Unfortunately, existing APT-related defense resource allocation models are infeasible because of the neglect of many realistic factors.In this paper, we make the decoy deployment strategy feasible by proposing a game-theoretic model called the APT Deception Game to describe interactions between the defender and the attacker. More specifically, we decompose the decoy deployment problem into two subproblems and make the problem solvable. Considering the best response of the attacker who is aware of the defender’s deployment strategy, we provide an elitist reservation genetic algorithm to solve this game. Simulation results demonstrate the effectiveness of our deployment strategy compared with other heuristic strategies.
NING, Baifeng, Xiao, Liang.
2021.
Defense Against Advanced Persistent Threats in Smart Grids: A Reinforcement Learning Approach. 2021 40th Chinese Control Conference (CCC). :8598–8603.
In smart girds, supervisory control and data acquisition (SCADA) systems have to protect data from advanced persistent threats (APTs), which exploit vulnerabilities of the power infrastructures to launch stealthy and targeted attacks. In this paper, we propose a reinforcement learning-based APT defense scheme for the control center to choose the detection interval and the number of Central Processing Units (CPUs) allocated to the data concentrators based on the data priority, the size of the collected meter data, the history detection delay, the previous number of allocated CPUs, and the size of the labeled compromised meter data without the knowledge of the attack interval and attack CPU allocation model. The proposed scheme combines deep learning and policy-gradient based actor-critic algorithm to accelerate the optimization speed at the control center, where an actor network uses the softmax distribution to choose the APT defense policy and the critic network updates the actor network weights to improve the computational performance. The advantage function is applied to reduce the variance of the policy gradient. Simulation results show that our proposed scheme has a performance gain over the benchmarks in terms of the detection delay, data protection level, and utility.
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.
2021.
An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.