Biblio
Security analysts implement various security mechanisms to protect systems from attackers. Even though these mechanisms try to secure systems, a talented attacker may use these same techniques to launch a sophisticated attack. This paper discuss about such an attack called as user account Denial of Service (DoS) where an attacker uses user account lockout features of the application to lockout all user accounts causing an enterprise wide DoS. The attack has being simulated usingastealthy attack mechanism called as Advanced Persistent Threats (APT) using a XMPP based botnet. Through the simulation, researchers discuss about the patterns associated with the attack which can be used to detect the attack in real time and how the attack can be prevented from the perspective of developers, system engineers and security analysts.
Advanced Persistent Threat (APT), unlike traditional hacking attempts, carries out specific attacks on a specific target to illegally collect information and data from it. These targeted attacks use special-crafted malware and infrequent activity to avoid detection, so that hackers can retain control over target systems unnoticed for long periods of time. In order to detect these stealthy activities, a large-volume of traffic data generated in a period of time has to be analyzed. We proposed a scalable solution, Ctracer to detect stealthy command and control channel in a large-volume of traffic data. APT uses multiple command and control (C&C) channel and change them frequently to avoid detection, but there are common signatures in those C&C sessions. By identifying common network signature, Ctracer is able to group the C&C sessions. Therefore, we can detect an APT and all the C&C session used in an APT attack. The Ctracer is evaluated in a large enterprise for four months, twenty C&C servers, three APT attacks are reported. After investigated by the enterprise's Security Operations Center (SOC), the forensic report shows that there is specific enterprise targeted APT cases and not ever discovered for over 120 days.
The landscape of cyber security has been reformed dramatically by the recently emerging Advanced Persistent Threat (APT). It is uniquely featured by the stealthy, continuous, sophisticated and well-funded attack process for long-term malicious gain, which render the current defense mechanisms inapplicable. A novel design of defense strategy, continuously combating APT in a long time-span with imperfect/incomplete information on attacker's actions, is urgently needed. The challenge is even more escalated when APT is coupled with the insider threat (a major threat in cyber-security), where insiders could trade valuable information to APT attacker for monetary gains. The interplay among the defender, APT attacker and insiders should be judiciously studied to shed insights on a more secure defense system. In this paper, we consider the joint threats from APT attacker and the insiders, and characterize the fore-mentioned interplay as a two-layer game model, i.e., a defense/attack game between defender and APT attacker and an information-trading game among insiders. Through rigorous analysis, we identify the best response strategies for each player and prove the existence of Nash Equilibrium for both games. Extensive numerical study further verifies our analytic results and examines the impact of different system configurations on the achievable security level.
Among most of the cyber attacks that occured, the most drastic are advanced persistent threats. APTs are differ from other attacks as they have multiple phases, often silent for long period of time and launched by adamant, well-funded opponents. These targeted attacks mainly concentrated on government agencies and organizations in industries, as are those involved in international trade and having sensitive data. APTs escape from detection by antivirus solutions, intrusion detection and intrusion prevention systems and firewalls. In this paper we proposes a classification model having 99.8% accuracy, for the detection of APT.
Basic Input Output System (BIOS) is the most important component of a computer system by virtue of its role i.e., it holds the code which is executed at the time of startup. It is considered as the trusted computing base, and its integrity is extremely important for smooth functioning of the system. On the contrary, BIOS of new computer systems (servers, laptops, desktops, network devices, and other embedded systems) can be easily upgraded using a flash or capsule mechanism which can add new vulnerabilities either through malicious code, or by accidental incidents, and deliberate attack. The recent attack on Iranian Nuclear Power Plant (Stuxnet) [1:2] is an example of advanced persistent attack. This attack vector adds a new dimension into the information security (IS) spectrum, which needs to be guarded by implementing a holistic approach employed at enterprise level. Malicious BIOS upgrades can also cause denial of service, stealing of information or addition of new backdoors which can be exploited by attackers for causing business loss, passive eaves dropping or total destruction of system without knowledge of user. To address this challenge a capability for verification of BIOS integrity needs to be developed and due diligence must be observed for proactive resolution of the issue. This paper explains the BIOS Integrity threats and presents a prevention strategy for effective and proactive resolution.
- « first
- ‹ previous
- 1
- 2
- 3
- 4