Biblio
Nowadays, a major challenge to network security is malicious codes. However, manual extraction of features is one of the characteristics of traditional detection techniques, which is inefficient. On the other hand, the features of the content and behavior of the malicious codes are easy to change, resulting in more inefficiency of the traditional techniques. In this paper, a K-Means Clustering Analysis is proposed based on Adaptive Weights (AW-MMKM). Identifying malicious codes in the proposed method is based on four types of network behavior that can be extracted from network traffic, including active, fault, network scanning, and page behaviors. The experimental results indicate that the AW-MMKM can detect malicious codes efficiently with higher accuracy.
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
Deep Packet Inspection (DPI) is instrumental in investigating the presence of malicious activity in network traffic and most existing DPI tools work on unencrypted payloads. As the internet is moving towards fully encrypted data-transfer, there is a critical requirement for privacy-aware techniques to efficiently decrypt network payloads. Until recently, passive proxying using certain aspects of TLS 1.2 were used to perform decryption and further DPI analysis. With the introduction of TLS 1.3 standard that only supports protocols with Perfect Forward Secrecy (PFS), many such techniques will become ineffective. Several security solutions will be forced to adopt active proxying that will become a big-data problem considering the velocity and veracity of network traffic involved. We have developed an ABAC (Attribute Based Access Control) framework that efficiently supports existing DPI tools while respecting user's privacy requirements and organizational policies. It gives the user the ability to accept or decline access decision based on his privileges. Our solution evaluates various observed and derived attributes of network connections against user access privileges using policies described with semantic technologies. In this paper, we describe our framework and demonstrate the efficacy of our technique with the help of use-case scenarios to identify network connections that are candidates for Deep Packet Inspection. Since our technique makes selective identification of connections based on policies, both processing and memory load at the gateway will be reduced significantly.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
Software Defined Networking (SDN) technology increases the evolution of Internet and network development. SDN, with its logical centralization of controllers and global network overview changes the network's characteristics, on term of flexibility, availability and programmability. However, this development increased the network communication security challenges. To enhance the SDN security, we propose the BCFR solution to avoid false flow rules injection in SDN data layer devices. In this solution, we use the blockchain technology to provide the controller authentication and the integrity of the traffic flow circulated between the controller and the other network elements. This work is implemented using OpenStack platform and Onos controller. The evaluation results show the effectiveness of our proposal.
Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.
At the time of more and more devices being connected to the internet, personal and sensitive information is going around the network more than ever. Thus, security and privacy regarding IoT communications, devices, and data are a concern due to the diversity of the devices and protocols used. Since traditional security mechanisms cannot always be adequate due to the heterogeneity and resource limitations of IoT devices, we conclude that there are still several improvements to be made to the 2nd line of defense mechanisms like Intrusion Detection Systems. Using a collection of IP flows, we can monitor the network and identify properties of the data that goes in and out. Since network flows collection have a smaller footprint than packet capturing, it makes it a better choice towards the Internet of Things networks. This paper aims to study IP flow properties of certain network attacks, with the goal of identifying an attack signature only by observing those properties.
With the economic development, the number of cars is increasing, and the traffic accidents and congestion problems that follow will not be underestimated. The concept of the Internet of Vehicles is becoming popular, and demand for intelligent traffic is growing. In this paper, the warning scheme we proposed aims to solve the traffic problems. Using intelligent terminals, it is faster and more convenient to obtain driving behaviors and road condition information. The application of blockchain technology can spread information to other vehicles for sharing without third-party certification. Group signature-based authentication protocol guarantees privacy and security while ensuring identity traceability. In experiments and simulations, the recognition accuracy of driving behavior can reach up to 94.90%. The use of blockchain provides secure, distributed, and autonomous features for the solution. Compared with the traditional signature method, the group signature-based authentication time varies less with the increase of the number of vehicles, and the communication time is more stable.
We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.
In today's time Software Defined Network (SDN) gives the complete control to get the data flow in the network. SDN works as a central point to which data is administered centrally and traffic is also managed. SDN being open source product is more prone to security threats. The security policies are also to be enforced as it would otherwise let the controller be attacked the most. The attacks like DDOS and DOS attacks are more commonly found in SDN controller. DDOS is destructive attack that normally diverts the normal flow of traffic and starts the over flow of flooded packets halting the system. Machine Learning techniques helps to identify the hidden and unexpected pattern of the network and hence helps in analyzing the network flow. All the classified and unclassified techniques can help detect the malicious flow based on certain parameters like packet flow, time duration, accuracy and precision rate. Researchers have used Bayesian Network, Wavelets, Support Vector Machine and KNN to detect DDOS attacks. As per the review it's been analyzed that KNN produces better result as per the higher precision and giving a lower falser rate for detection. This paper produces better approach of hybrid Machine Learning techniques rather than existing KNN on the same data set giving more accuracy of detecting DDOS attacks on higher precision rate. The result of the traffic with both normal and abnormal behavior is shown and as per the result the proposed algorithm is designed which is suited for giving better approach than KNN and will be implemented later on for future.
Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).
The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.
SSL certificates are a core component of the public key infrastructure that underpins encrypted communication in the Internet. In this paper, we report the results of a longitudinal study of the characteristics of SSL certificate chains presented to clients during secure web (HTTPS) connection setup. Our data set consists of 23B SSL certificate chains collected from a global panel consisting of over 2M residential client machines over a period of 6 months. The data informing our analyses provide perspective on the entire chain of trust, including root certificates, across a wide distribution of client machines. We identify over 35M unique certificate chains with diverse relationships at all levels of the PKI hierarchy. We report on the characteristics of valid certificates, which make up 99.7% of the total corpus. We also examine invalid certificate chains, finding that 93% of them contain an untrusted root certificate and we find they have shorter average chain length than their valid counterparts. Finally, we examine two unintended but prevalent behaviors in our data: the deprecation of root certificates and secure traffic interception. Our results support aspects of prior, scan-based studies on certificate characteristics but contradict other findings, highlighting the importance of the residential client-side perspective.