Gupta, Rishabh, Singh, Ashutosh Kumar.
2022.
Privacy-Preserving Cloud Data Model based on Differential Approach. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–6.
With the variety of cloud services, the cloud service provider delivers the machine learning service, which is used in many applications, including risk assessment, product recommen-dation, and image recognition. The cloud service provider initiates a protocol for the classification service to enable the data owners to request an evaluation of their data. The owners may not entirely rely on the cloud environment as the third parties manage it. However, protecting data privacy while sharing it is a significant challenge. A novel privacy-preserving model is proposed, which is based on differential privacy and machine learning approaches. The proposed model allows the various data owners for storage, sharing, and utilization in the cloud environment. The experiments are conducted on Blood transfusion service center, Phoneme, and Wilt datasets to lay down the proposed model's efficiency in accuracy, precision, recall, and Fl-score terms. The results exhibit that the proposed model specifies high accuracy, precision, recall, and Fl-score up to 97.72%, 98.04%, 97.72%, and 98.80%, respectively.
Lu, Xiaotian, Piao, Chunhui, Han, Jianghe.
2022.
Differential Privacy High-dimensional Data Publishing Method Based on Bayesian Network. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :623–627.
Ensuring high data availability while realizing privacy protection is a research hotspot in the field of privacy-preserving data publishing. In view of the instability of data availability in the existing differential privacy high-dimensional data publishing methods based on Bayesian networks, this paper proposes an improved MEPrivBayes privacy-preserving data publishing method, which is mainly improved from two aspects. Firstly, in view of the structural instability caused by the random selection of Bayesian first nodes, this paper proposes a method of first node selection and Bayesian network construction based on the Maximum Information Coefficient Matrix. Then, this paper proposes a privacy budget elastic allocation algorithm: on the basis of pre-setting differential privacy budget coefficients for all branch nodes and all leaf nodes in Bayesian network, the influence of branch nodes on their child nodes and the average correlation degree between leaf nodes and all other nodes are calculated, then get a privacy budget strategy. The SVM multi-classifier is constructed with privacy preserving data as training data set, and the original data set is used as input to evaluate the prediction accuracy in this paper. The experimental results show that the MEPrivBayes method proposed in this paper has higher data availability than the classical PrivBayes method. Especially when the privacy budget is small (noise is large), the availability of the data published by MEPrivBayes decreases less.