Visible to the public Biblio

Found 365 results

Filters: Keyword is Support vector machines  [Clear All Filters]
2021-03-01
Perisetty, A., Bodempudi, S. T., Shaik, P. Rahaman, Kumar, B. L. N. Phaneendra.  2020.  Classification of Hyperspectral Images using Edge Preserving Filter and Nonlinear Support Vector Machine (SVM). 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). :1050–1054.
Hyperspectral image is acquired with a special sensor in which the information is collected continuously. This sensor will provide abundant data from the scene captured. The high voluminous data in this image give rise to the extraction of materials and other valuable items in it. This paper proposes a methodology to extract rich information from the hyperspectral images. As the information collected in a contiguous manner, there is a need to extract spectral bands that are uncorrelated. A factor analysis based dimensionality reduction technique is employed to extract the spectral bands and a weight least square filter is used to get the spatial information from the data. Due to the preservation of edge property in the spatial filter, much information is extracted during the feature extraction phase. Finally, a nonlinear SVM is applied to assign a class label to the pixels in the image. The research work is tested on the standard dataset Indian Pines. The performance of the proposed method on this dataset is assessed through various accuracy measures. These accuracies are 96%, 92.6%, and 95.4%. over the other methods. This methodology can be applied to forestry applications to extract the various metrics in the real world.
Lim, S., Ko, Y..  2020.  Intellectual Priority-based Low Latency Data Delivery Scheme for Multi-interface and Multi-channel Devices in Multi-hop Wireless Mesh Networks. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :417–419.
In multi-hop wireless mesh networks, the end-to-end delay for a packet is getting longer as the relaying hops to the destination are increasing. The real-time packet such as the urgent safety message should be delivered within the stipulated deadline. Most previous studies have been focused to find out the optimal route to the destination. We propose an intellectual priority-based packet transmission scheme for multi-interface devices in multi-hop wireless mesh networks.
2021-02-23
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
Chen, W., Cao, H., Lv, X., Cao, Y..  2020.  A Hybrid Feature Extraction Network for Intrusion Detection Based on Global Attention Mechanism. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :481—485.
The widespread application of 5G will make intrusion detection of large-scale network traffic a mere need. However, traditional intrusion detection cannot meet the requirements by manually extracting features, and the existing AI methods are also relatively inefficient. Therefore, when performing intrusion detection tasks, they have significant disadvantages of high false alarm rates and low recognition performance. For this challenge, this paper proposes a novel hybrid network, RULA-IDS, which can perform intrusion detection tasks by great amount statistical data from the network monitoring system. RULA-IDS consists of the fully connected layer, the feature extraction layer, the global attention mechanism layer and the SVM classification layer. In the feature extraction layer, the residual U-Net and LSTM are used to extract the spatial and temporal features of the network traffic attributes. It is worth noting that we modified the structure of U-Net to suit the intrusion detection task. The global attention mechanism layer is then used to selectively retain important information from a large number of features and focus on those. Finally, the SVM is used as a classifier to output results. The experimental results show that our method outperforms existing state-of-the-art intrusion detection methods, and the accuracies of training and testing are improved to 97.01% and 98.19%, respectively, and presents stronger robustness during training and testing.
2021-02-22
Haile, J., Havens, S..  2020.  Identifying Ubiquitious Third-Party Libraries in Compiled Executables Using Annotated and Translated Disassembled Code with Supervised Machine Learning. 2020 IEEE Security and Privacy Workshops (SPW). :157–162.
The size and complexity of the software ecosystem is a major challenge for vendors, asset owners and cybersecurity professionals who need to understand the security posture of these systems. Annotated and Translated Disassembled Code is a graph based datastore designed to organize firmware and software analysis data across builds, packages and systems, providing a highly scalable platform enabling automated binary software analysis tasks including corpora construction and storage for machine learning. This paper describes an approach for the identification of ubiquitous third-party libraries in firmware and software using Annotated and Translated Disassembled Code and supervised machine learning. Annotated and Translated Disassembled Code provide matched libraries, function names and addresses of previously unidentified code in software as it is being automatically analyzed. This data can be ingested by other software analysis tools to improve accuracy and save time. Defenders can add the identified libraries to their vulnerability searches and add effective detection and mitigation into their operating environment.
2021-02-16
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
2021-02-01
Bai, Y., Guo, Y., Wei, J., Lu, L., Wang, R., Wang, Y..  2020.  Fake Generated Painting Detection Via Frequency Analysis. 2020 IEEE International Conference on Image Processing (ICIP). :1256–1260.
With the development of deep neural networks, digital fake paintings can be generated by various style transfer algorithms. To detect the fake generated paintings, we analyze the fake generated and real paintings in Fourier frequency domain and observe statistical differences and artifacts. Based on our observations, we propose Fake Generated Painting Detection via Frequency Analysis (FGPD-FA) by extracting three types of features in frequency domain. Besides, we also propose a digital fake painting detection database for assessing the proposed method. Experimental results demonstrate the excellence of the proposed method in different testing conditions.
2021-01-20
Rashid, A., Siddique, M. J., Ahmed, S. M..  2020.  Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—9.

Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.

Lei, M., Jin, M., Huang, T., Guo, Z., Wang, Q., Wu, Z., Chen, Z., Chen, X., Zhang, J..  2020.  Ultra-wideband Fingerprinting Positioning Based on Convolutional Neural Network. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1—5.

The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.

2021-01-15
McCloskey, S., Albright, M..  2019.  Detecting GAN-Generated Imagery Using Saturation Cues. 2019 IEEE International Conference on Image Processing (ICIP). :4584—4588.
Image forensics is an increasingly relevant problem, as it can potentially address online disinformation campaigns and mitigate problematic aspects of social media. Of particular interest, given its recent successes, is the detection of imagery produced by Generative Adversarial Networks (GANs), e.g. `deepfakes'. Leveraging large training sets and extensive computing resources, recent GANs can be trained to generate synthetic imagery which is (in some ways) indistinguishable from real imagery. We analyze the structure of the generating network of a popular GAN implementation [1], and show that the network's treatment of exposure is markedly different from a real camera. We further show that this cue can be used to distinguish GAN-generated imagery from camera imagery, including effective discrimination between GAN imagery and real camera images used to train the GAN.
Yang, X., Li, Y., Lyu, S..  2019.  Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8261—8265.
In this paper, we propose a new method to expose AI-generated fake face images or videos (commonly known as the Deep Fakes). Our method is based on the observations that Deep Fakes are created by splicing synthesized face region into the original image, and in doing so, introducing errors that can be revealed when 3D head poses are estimated from the face images. We perform experiments to demonstrate this phenomenon and further develop a classification method based on this cue. Using features based on this cue, an SVM classifier is evaluated using a set of real face images and Deep Fakes.
Kharbat, F. F., Elamsy, T., Mahmoud, A., Abdullah, R..  2019.  Image Feature Detectors for Deepfake Video Detection. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—4.
Detecting DeepFake videos are one of the challenges in digital media forensics. This paper proposes a method to detect deepfake videos using Support Vector Machine (SVM) regression. The SVM classifier can be trained with feature points extracted using one of the different feature-point detectors such as HOG, ORB, BRISK, KAZE, SURF, and FAST algorithms. A comprehensive test of the proposed method is conducted using a dataset of original and fake videos from the literature. Different feature point detectors are tested. The result shows that the proposed method of using feature-detector-descriptors for training the SVM can be effectively used to detect false videos.
Khalid, H., Woo, S. S..  2020.  OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2794—2803.
An image forgery method called Deepfakes can cause security and privacy issues by changing the identity of a person in a photo through the replacement of his/her face with a computer-generated image or another person's face. Therefore, a new challenge of detecting Deepfakes arises to protect individuals from potential misuses. Many researchers have proposed various binary-classification based detection approaches to detect deepfakes. However, binary-classification based methods generally require a large amount of both real and fake face images for training, and it is challenging to collect sufficient fake images data in advance. Besides, when new deepfakes generation methods are introduced, little deepfakes data will be available, and the detection performance may be mediocre. To overcome these data scarcity limitations, we formulate deepfakes detection as a one-class anomaly detection problem. We propose OC-FakeDect, which uses a one-class Variational Autoencoder (VAE) to train only on real face images and detects non-real images such as deepfakes by treating them as anomalies. Our preliminary result shows that our one class-based approach can be promising when detecting Deepfakes, achieving a 97.5% accuracy on the NeuralTextures data of the well-known FaceForensics++ benchmark dataset without using any fake images for the training process.
2021-01-11
Wu, N., Farokhi, F., Smith, D., Kaafar, M. A..  2020.  The Value of Collaboration in Convex Machine Learning with Differential Privacy. 2020 IEEE Symposium on Security and Privacy (SP). :304–317.
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-12-28
Barni, M., Nowroozi, E., Tondi, B., Zhang, B..  2020.  Effectiveness of Random Deep Feature Selection for Securing Image Manipulation Detectors Against Adversarial Examples. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2977—2981.

We investigate if the random feature selection approach proposed in [1] to improve the robustness of forensic detectors to targeted attacks, can be extended to detectors based on deep learning features. In particular, we study the transferability of adversarial examples targeting an original CNN image manipulation detector to other detectors (a fully connected neural network and a linear SVM) that rely on a random subset of the features extracted from the flatten layer of the original network. The results we got by considering three image manipulation detection tasks (resizing, median filtering and adaptive histogram equalization), two original network architectures and three classes of attacks, show that feature randomization helps to hinder attack transferability, even if, in some cases, simply changing the architecture of the detector, or even retraining the detector is enough to prevent the transferability of the attacks.

2020-12-14
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
Dong, D., Ye, Z., Su, J., Xie, S., Cao, Y., Kochan, R..  2020.  A Malware Detection Method Based on Improved Fireworks Algorithm and Support Vector Machine. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :846–851.
The increasing of malwares has presented a serious threat to the security of computer systems in recent years. Traditional signature-based anti-virus systems are not able to detect metamorphic and previously unseen malwares and it inspires people to use machine learning methods such as Naive Bayes and Decision Tree to identity malicious executables. Among these methods, detecting malwares by using Support Vector Machine (SVM) is one of the most effective approaches. However, the parameters of SVM have serious impacts on its classification performance. In order to find the optimal parameter combination and avoid the problem of falling into local optimal solution, many methods based on evolutionary algorithms are proposed, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and others. But these algorithms still face the problem of being trapped into local solution spaces in different degree. In this paper, an improved fireworks algorithm is presented and applied to search parameters of SVM: penalty factor c and kernel function parameter g. To research the performance of the proposed algorithm, numeric experiments are made and compared with some typical algorithms, the experimental results demonstrate it outperforms other algorithms.
Yu, L., Chen, L., Dong, J., Li, M., Liu, L., Zhao, B., Zhang, C..  2020.  Detecting Malicious Web Requests Using an Enhanced TextCNN. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :768–777.
This paper proposes an approach that combines a deep learning-based method and a traditional machine learning-based method to efficiently detect malicious requests Web servers received. The first few layers of Convolutional Neural Network for Text Classification (TextCNN) are used to automatically extract powerful semantic features and in the meantime transferable statistical features are defined to boost the detection ability, specifically Web request parameter tampering. The semantic features from TextCNN and transferable statistical features from artificially-designing are grouped together to be fed into Support Vector Machine (SVM), replacing the last layer of TextCNN for classification. To facilitate the understanding of abstract features in form of numerical data in vectors extracted by TextCNN, this paper designs trace-back functions that map max-pooling outputs back to words in Web requests. After investigating the current available datasets for Web attack detection, HTTP Dataset CSIC 2010 is selected to test and verify the proposed approach. Compared with other deep learning models, the experimental results demonstrate that the approach proposed in this paper is competitive with the state-of-the-art.
Kyaw, A. T., Oo, M. Zin, Khin, C. S..  2020.  Machine-Learning Based DDOS Attack Classifier in Software Defined Network. 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :431–434.
Due to centralized control and programmable capability of the SDN architecture, network administrators can easily manage and control the whole network through the centralized controller. According to the SDN architecture, the SDN controller is vulnerable to distributed denial of service (DDOS) attacks. Thus, a failure of SDN controller is a major leak for security concern. The objectives of paper is therefore to detect the DDOS attacks and classify the normal or attack traffic in SDN network using machine learning algorithms. In this proposed system, polynomial SVM is applied to compare to existing linear SVM by using scapy, which is packet generation tool and RYU SDN controller. According to the experimental result, polynomial SVM achieves 3% better accuracy and 34% lower false alarm rate compared to Linear SVM.
Yu, C. L., Han, Z. Gang, Xiao, W. H., Tong, M. Song.  2020.  A Support Vector Machine Algorithm for PIR Special Processor. 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). :279–280.
With the continuous improvement of people's safety awareness, infrared products as human motion detection technology have been widely used in the field of security. In order to better apply infrared products to life, improving the performance of infrared products and reducing the cost of products has become the main goal. According to the signal collected by Pyroelectric infrared (PIR) sensor, this paper establishes a database model. According to the data collected, Kalman filter is used to preprocess the data. The validity of the data after preprocessing is judged by the algorithm. The experimental results show that the accuracy of the model can reach 97% by using a support vector machine (SVM) algorithm incorporated with Fast Fourier Transform (FFT). According to the above algorithm flow, a real-time intellectual property (IP) core is designed by using hardware description language, after establishing the data processing algorithm. The interface design, timing design and function design of the IP core are designed. The IP core can be connected to the microcontroller unit (MCU) as an independent peripheral to form a PIR special processor, which can detect the distance of 15 m in real time.
Deng, M., Wu, X., Feng, P., Zeng, W..  2020.  Sparse Support Vector Machine for Network Behavior Anomaly Detection. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :199–204.
Network behavior anomaly detection (NBAD) require fast mechanisms for learning from the large scale data. However, the training velocity of general machine learning approach is largely limited by the adopted training weights of all features in the NBAD. In this paper, we notice, however, that the related weights matching of NBAD features is sparse, which is not necessary for holding all weights. Hence, in this paper, we consider an efficient support vector machine (SVM) approach for NBAD by imposing 1 -norm. Essentially, we propose to use sparse SVM (S-SVM), where sparsity in model, i.e. in weights is used to interfere with special feature selection and that can achieve feature selection and classification efficiently.
Chen, X., Cao, C., Mai, J..  2020.  Network Anomaly Detection Based on Deep Support Vector Data Description. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :251–255.
Intrusion detection system based on representation learning is the main research direction in the field of anomaly detection. Malicious traffic detection system can distinguish normal and malicious traffic by learning representations between normal and malicious traffic. However, under the context of big data, there are many types of malicious traffic, and the features are also changing constantly. It is still a urgent problem to design a detection model that can effectively learn and summarize the feature of normal traffic and accurately identify the features of new kinds of malicious traffic.in this paper, a malicious traffic detection method based on Deep Support Vector Data Description is proposed, which is called Deep - SVDD. We combine convolutional neural network (CNN) with support vector data description, and train the model with normal traffic. The normal traffic features are mapped to high-dimensional space through neural networks, and a compact hypersphere is trained by unsupervised learning, which includes the normal features of the highdimensional space. Malicious traffic fall outside the hypersphere, thus distinguishing between normal and malicious traffic. Experiments show that the model has a high detection rate and a low false alarm rate, and it can effectively identify new malicious traffic.
Habibi, G., Surantha, N..  2020.  XSS Attack Detection With Machine Learning and n-Gram Methods. 2020 International Conference on Information Management and Technology (ICIMTech). :516–520.

Cross-Site Scripting (XSS) is an attack most often carried out by attackers to attack a website by inserting malicious scripts into a website. This attack will take the user to a webpage that has been specifically designed to retrieve user sessions and cookies. Nearly 68% of websites are vulnerable to XSS attacks. In this study, the authors conducted a study by evaluating several machine learning methods, namely Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and Naïve Bayes (NB). The machine learning algorithm is then equipped with the n-gram method to each script feature to improve the detection performance of XSS attacks. The simulation results show that the SVM and n-gram method achieves the highest accuracy with 98%.

Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.