Biblio
Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.
Recently, as the age of the Internet of Things is approaching, there are more and more devices that communicate data with each other by incorporating sensors and communication functions in various objects. If the IoT is miniaturized, it can be regarded as a sensor having only the sensing ability and the low performance communication ability. Low-performance sensors are difficult to use high-quality communication, and wireless security used in expensive wireless communication devices cannot be applied. Therefore, this paper proposes authentication and key Agreement that can be applied in sensor networks using communication with speed less than 1 Kbps and has limited performances.
In this study, we present WindTalker, a novel and practical keystroke inference framework that allows an attacker to infer the sensitive keystrokes on a mobile device through WiFi-based side-channel information. WindTalker is motivated from the observation that keystrokes on mobile devices will lead to different hand coverage and the finger motions, which will introduce a unique interference to the multi-path signals and can be reflected by the channel state information (CSI). The adversary can exploit the strong correlation between the CSI fluctuation and the keystrokes to infer the user's number input. WindTalker presents a novel approach to collect the target's CSI data by deploying a public WiFi hotspot. Compared with the previous keystroke inference approach, WindTalker neither deploys external devices close to the target device nor compromises the target device. Instead, it utilizes the public WiFi to collect user's CSI data, which is easy-to-deploy and difficult-to-detect. In addition, it jointly analyzes the traffic and the CSI to launch the keystroke inference only for the sensitive period where password entering occurs. WindTalker can be launched without the requirement of visually seeing the smart phone user's input process, backside motion, or installing any malware on the tablet. We implemented Windtalker on several mobile phones and performed a detailed case study to evaluate the practicality of the password inference towards Alipay, the largest mobile payment platform in the world. The evaluation results show that the attacker can recover the key with a high successful rate.
This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that use game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications. We organize the presented works in six main categories: security of the physical and MAC layers, security of self-organizing networks, intrusion detection systems, anonymity and privacy, economics of network security, and cryptography. In each category, we identify security problems, players, and game models. We summarize the main results of selected works, such as equilibrium analysis and security mechanism designs. In addition, we provide a discussion on the advantages, drawbacks, and future direction of using game theory in this field. In this survey, our goal is to instill in the reader an enhanced understanding of different research approaches in applying gametheoretic methods to network security. This survey can also help researchers from various fields develop game-theoretic solutions to current and emerging security problems in computer networking.
Wireless security has been an active research area since the last decade. A lot of studies of wireless security use cryptographic tools, but traditional cryptographic tools are normally based on computational assumptions, which may turn out to be invalid in the future. Consequently, it is very desirable to build cryptographic tools that do not rely on computational assumptions. In this paper, we focus on a crucial cryptographic tool, namely 1-out-of-2 oblivious transfer. This tool plays a central role in cryptography because we can build a cryptographic protocol for any polynomial-time computable function using this tool. We present a novel 1-out-of-2 oblivious transfer protocol based on wireless channel characteristics, which does not rely on any computational assumption. We also illustrate the potential broad applications of this protocol by giving two applications, one on private communications and the other on privacy preserving password verification. We have fully implemented this protocol on wireless devices and conducted experiments in real environments to evaluate the protocol. Our experimental results demonstrate that it has reasonable efficiency.