Visible to the public Biblio

Filters: Keyword is Trust Routing  [Clear All Filters]
2022-08-10
Perarasi, T., Vidhya, S., Moses M., Leeban, Ramya, P..  2020.  Malicious Vehicles Identifying and Trust Management Algorithm for Enhance the Security in 5G-VANET. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :269—275.
In this fifth generation of vehicular communication, the security against various malicious attacks are achieved by using malicious vehicles identification and trust management (MAT) algorithm. Basically, the proposed MAT algorithm performs in two dimensions, they are (i) Node trust and (ii) information trust accompanied with a digital signature and hash chain concept. In node trust, the MAT algorithm introduces the special form of key exchanging algorithm to every members of public group key, and later the vehicles with same target location are formed into cluster. The public group key is common for each participant but everyone maintain their own private key to produce the secret key. The proposed MAT algorithm, convert the secrete key into some unique form that allows the CMs (cluster members) to decipher that secrete key by utilizing their own private key. This key exchanging algorithm is useful to prevent the various attacks, like impersonate attack, man in middle attack, etc. In information trust, the MAT algorithm assigns some special nodes (it has common distance from both vehicles) for monitoring the message forwarding activities as well as routing behavior at particular time. This scheme is useful to predict an exact intruder and after time out the special node has dropped all the information. The proposed MAT algorithm accurately evaluates the trustworthiness of each node as well as information to control different attacks and become efficient for improving a group lifetime, stability of cluster, and vehicles that are located on their target place at correct time.
Ding, Yuanming, Zhao, Yu, Zhang, Ran.  2020.  A Secure Routing Algorithm Based on Trust Value for Micro-nano Satellite Network. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :229—235.
With the increasing application of micro-nano satellite network, it is extremely vulnerable to the influence of internal malicious nodes in the practical application process. However, currently micro-nano satellite network still lacks effective means of routing security protection. In order to solve this problem, combining with the characteristics of limited energy and computing capacity of micro-nano satellite nodes, this research proposes a secure routing algorithm based on trust value. First, the trust value of the computing node is synthesized, and then the routing path is generated by combining the trust value of the node with the AODV routing algorithm. Simulation results show that the proposed MNS-AODV routing algorithm can effectively resist the influence of internal malicious nodes on data transmission, and it can reduce the packet loss rate and average energy consumption.
Prabhu, S., Anita E.A., Mary.  2020.  Trust based secure routing mechanisms for wireless sensor networks: A survey. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1003—1009.
Wireless Sensor Network (WSN)is a predominant technology that is widely used in many applications such as industrial sectors, defense, environment, habitat monitoring, medical fields etc., These applications are habitually delegated for observing sensitive and confidential raw data such as adversary position, movement in the battle field, location of personnel in a building, changes in environmental condition, regular medical updates from patient side to doctors or hospital control rooms etc., Security becomes inevitable in WSN and providing security is being truly intricate because of in-built nature of WSN which is assailable to attacks easily. Node involved in WSN need to route the data to the neighboring nodes wherein any attack in the node could lead to fiasco. Of late trust mechanisms have been considered to be an ideal solution that can mitigate security problems in WSN. This paper aims to investigate various existing trust-based Secure Routing (SR) protocols and mechanisms available for the wireless sensing connection. The concept of the present trust mechanism is also analyzed with respect to methodology, trust metric, pros, cons, and complexity involved. Finally, the security resiliency of various trust models against the attacks is also analyzed.
2021-11-08
Hu, Feng, Chen, Bing, Shi, Dian, Zhang, Xinyue, Pan, Haijun ZhangMiao.  2020.  Secure Routing Protocol in Wireless Ad Hoc Networks via Deep Learning. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Open wireless channels make a wireless ad hoc network vulnerable to various security attacks, so it is crucial to design a routing protocol that can defend against the attacks of malicious nodes. In this paper, we first measure the trust value calculated by the node behavior in a period to judge whether the node is trusted, and then combine other QoS requirements as the routing metrics to design a secure routing approach. Moreover, we propose a deep learning-based model to learn the routing environment repeatedly from the data sets of packet flow and corresponding optimal paths. Then, when a new packet flow is input, the model can output a link set that satisfies the node's QoS and trust requirements directly, and therefore the optimal path of the packet flow can be obtained. The extensive simulation results show that compared with the traditional optimization-based method, our proposed deep learning-based approach cannot only guarantee more than 90% accuracy, but also significantly improves the computation time.
Sharma, Nisha, Sharma, Manish, Sharma, Durga Prasad.  2020.  A Trust Based Scheme for Spotting Malicious Node of Wormhole in Dynamic Source Routing Protocol. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1232–1237.
The exceptional attributes of impromptu network of being framework less, self-composed and unconstrained make the task more challenging to secure it. In mobile Ad-hoc network nodes reliant on one another for transmitting information, that make MANET helpless against different sorts of security attacks. These security attacks can be arranged as Passive and Active attacks. Wormhole is an Active attack and considered generally risky as it can make significant harm routing. Various secure routing mechanism has been created are based on cryptography mechanism, need pre-organized structure, centralized authority, or need external hardware, etc. These components are unreasonable due to restricted accessible assets in MANET. In this paper, we are proposing an effective trust-based mechanism based on the concept of Node to Node packet delay for the detection of the malevolent node of wormhole. The trust value of each node is calculated by observing the packet transaction among adjacent nodes and later this trust value is used for identification of malevolent node. Based on the trust values, further routing decisions and selecting a secured route can be perform.
Rao, G Balu Narasimha, Veeraiah, D, Rao, D Srinivasa.  2020.  Power and Trust Based Routing for MANET Using RRRP Algorithm. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :160–164.
In MANET's (MOBILE Adhoc Network), the origin node will communicate the target node with the help of in-between nodes by Multi-hop communication to save power [1]. Thus, the main objective in MANETs is to identify the feasible route such that the parcels of the data can be done in an organized manner. So, the nodes in the selected route are honest and reliable. However, bad behavior nodes may affect routing performance. This work aims to discover the route does not have egotistic nodes, i.e., nodes which having honest & energy are less not considered for the route between origin and target. The proposed procedure holds the input from the end-user and results in the boundary values i.e. avg. throughput, appropriateness and drop fraction of egotistic nodes were stored in a result location. After the simulation, the discovered route by using the proposed protocol improves the overall network performance for output parameters.
Sisodiya, Mraduraje, Dahima, Vartika, Joshi, Sunil.  2020.  Trust Based Mechanism Using Multicast Routing in RPL for the Internet of Things. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :392–397.
RPL, the IPv6 Routing Protocol for low-power and lossy networks, was standardized by the Internet Engineering Task Force (IETF) in 2011. It is developed to connect resource constrained devices enabled by low-power and lossy networks (LLNs). RPL prominently becomes the routing protocol for IoT. However, the RPL protocol is facing many challenges such as trustworthiness among the nodes which need to be addressed and resolved to make the network secure and efficient. In this paper, a multicasting technique is developed that is based on trust mechanism to resolve this issue. This mechanism manages and protects the network from untrusted nodes which can hamper the security and result in delayed and distorted transmission of data. It allows any node to decide whether to trust other nodes or not during the construction of the topology. This is then proved efficient by comparing it with broadcasting nature of the transmission among the nodes in terms of energy, throughput, percentage of alive and dead nodes.
Qaisar, Muhammad Umar Farooq, Wang, Xingfu, Hawbani, Ammar, Khan, Asad, Ahmed, Adeel, Wedaj, Fisseha Teju.  2020.  TORP: Load Balanced Reliable Opportunistic Routing for Asynchronous Wireless Sensor Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1384–1389.
Opportunistic routing (OR) is gaining popularity in low-duty wireless sensor network (WSN), so the need for efficient and reliable data transmission is becoming more essential. Reliable transmission is only feasible if the routing protocols are secure and efficient. Due to high energy consumption, current cryptographic schemes for WSN are not suitable. Trust-based OR will ensure security and reliability with fewer resources and minimum energy consumption. OR selects the set of potential candidates for each sensor node using a prioritized metric by load balancing among the nodes. This paper introduces a trust-based load-balanced OR for duty-cycled wireless sensor networks. The candidates are prioritized on the basis of a trusted OR metric that is divided into two parts. First, the OR metric is based on the average of four probability distributions: the distance from node to sink distribution, the expected number of hops distribution, the node degree distribution, and the residual energy distribution. Second, the trust metric is based on the average of two probability distributions: the direct trust distribution and the recommended trust distribution. Finally, the trusted OR metric is calculated by multiplying the average of two metrics distributions in order to direct more traffic through the higher priority nodes. The simulation results show that our proposed protocol provides a significant improvement in the performance of the network compared to the benchmarks in terms of energy consumption, end to end delay, throughput, and packet delivery ratio.
Lin, Xinyi, Hou, Gonghua, Lin, Wei, Chen, Kangjie.  2020.  Quantum Key Distribution in Partially-Trusted QKD Ring Networks. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :33–36.
The long-distance transmission of quantum secret key is a challenge for quantum communication. As far as the current relay technology is concerned, the trusted relay technology is a more practical scheme. However, the trusted relay technology requires every relay node to be trusted, but in practical applications, the security of some relay nodes cannot be guaranteed. How to overcome the security problem of trusted relay technology and realize the security key distribution of remote quantum network has become a new problem. Therefore, in this paper, a method of quantum key distribution in ring network is proposed under the condition of the coexistence of trusted and untrusted repeaters, and proposes a partially-trusted based routing algorithm (PT-RA). This scheme effectively solves the security problem of key distribution in ring backbone network. And simulation results show that PT-RA can significantly improve key distribution success rate compared with the original trusted relay technology.
Bhawsar, Aditya, Pandey, Yogadhar, Singh, Upendra.  2020.  Detection and Prevention of Wormhole Attack Using the Trust-Based Routing System. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :809–814.
As the configuration used for the Mobile Ad hoc Networks (MANET) does not have a fixed infrastructure as well, the mechanism varies for each MANET. The finding of the route in this mechanism also varies because it does not have any fixed path route for routing as well every node in this structure behaves like a base station. MANET has such freedom for its creation, so it also faces various types of attacks on it. Some of the attacks are a black hole, warm hole etc. The researchers have provided various methods to prevent warm hole attacks, as the warm hole attack is seen as difficult to prevent. So here a mechanism is proposed to detect and prevent the warm hole attack using the AODV protocol which is based on trust calculation. In our method, the multiple path selection is used for finding the best path for routing. The path is tested for the warm hole attack, as the node is detected the data packet sent in between the source and destination selects the path from the multi-paths available and the packet delivery is improved. The packet delivery ratio (PDR) is calculated for the proposed mechanism, and the results have improved the PDR by 71.25%, throughput by 74.09 kbps, and the E to E delay is decreased by 57.92ms for the network of 125 nodes.
Muzammal, Syeda Mariam, Murugesan, Raja Kumar, Jhanjhi, Noor Zaman, Jung, Low Tang.  2020.  SMTrust: Proposing Trust-Based Secure Routing Protocol for RPL Attacks for IoT Applications. 2020 International Conference on Computational Intelligence (ICCI). :305–310.
With large scale generation and exchange of data between IoT devices and constrained IoT security to protect data communication, it becomes easy for attackers to compromise data routes. In IoT networks, IPv6 Routing Protocol is the de facto routing protocol for Low Power and Lossy Networks (RPL). RPL offers limited security against several RPL-specific and WSN-inherited attacks in IoT applications. Additionally, IoT devices are limited in memory, processing, and power to operate properly using the traditional Internet and routing security solutions. Several mitigation schemes for the security of IoT networks and routing, have been proposed including Machine Learning-based, IDS-based, and Trust-based approaches. In existing trust-based methods, mobility of nodes is not considered at all or its insufficient for mobile sink nodes, specifically for security against RPL attacks. This research work proposes a conceptual design, named SMTrust, for security of routing protocol in IoT, considering the mobility-based trust metrics. The proposed solution intends to provide defense against popular RPL attacks, for example, Blackhole, Greyhole, Rank, Version Number attacks, etc. We believe that SMTrust shall provide better network performance for attacks detection accuracy, mobility and scalability as compared to existing trust models, such as, DCTM-RPL and SecTrust-RPL. The novelty of our solution is that it considers the mobility metrics of the sensor nodes as well as the sink nodes, which has not been addressed by the existing models. This consideration makes it suitable for mobile IoT environment. The proposed design of SMTrust, as secure routing protocol, when embedded in RPL, shall ensure confidentiality, integrity, and availability among the sensor nodes during routing process in IoT communication and networks.
2021-10-04
Qu, Dapeng, Zhang, Jiankun, Hou, Zhenhuan, Wang, Min, Dong, Bo.  2020.  A Trust Routing Scheme Based on Identification of Non-complete Cooperative Nodes in Mobile Peer-to-Peer Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :22–29.
Mobile peer-to-peer network (MP2P) attracts increasing attentions due to the ubiquitous use of mobile communication and huge success of peer-to-peer (P2P) mode. However, open p2p mode makes nodes tend to be selfish, and the scarcity of resources in mobile nodes aggravates this problem, thus the nodes easily express a non-complete cooperative (NCC) attitude. Therefore, an identification of non-complete cooperative nodes and a corresponding trust routing scheme are proposed for MP2P in this paper. The concept of octant is firstly introduced to build a trust model which analyzes nodes from three dimensions, namely direct trust, internal state and recommendation reliability, and then the individual non-complete cooperative (INCC) nodes can be identified by the division of different octants. The direct trust monitors nodes' external behaviors, and the consideration of internal state and recommendation reliability contributes to differentiate the subjective and objective non-cooperation, and mitigate the attacks about direct trust values respectively. Thus, the trust model can identify various INCC nodes accurately. On the basis of identification of INCC nodes, cosine similarity method is applied to identify collusive non-complete cooperate (CNCC) nodes. Moreover, a trust routing scheme based on the identification of NCC nodes is presented to reasonably deal with different kinds of NCC nodes. Results from extensive simulation experiments demonstrate that this proposed identification and routing scheme have better performances, in terms of identification precision and packet delivery fraction than current schemes respectively.
2021-03-09
Naveena, S., Senthilkumar, C., Manikandan, T..  2020.  Analysis and Countermeasures of Black-Hole Attack in MANET by Employing Trust-Based Routing. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1222–1227.
A self-governing system consisting of mobile nodes that exchange information within a cellular area and is known as a mobile ad hoc network (MANET). Due to its dynamic nature, it is vulnerable to attacks and there is no fixed infrastructure. To transfer a data packet Ad-hoc On-Demand Distance Vector (AODV) is used and it's another form of a reactive protocol. The black-hole attack is a major attack that drastically decreases the packet delivery ratio during a data transaction in a routing environment. In this attack, the attacker's node acts as the shortest path to the target node itself. If the attacker node receives the data packet from the source node, all obtained data packets are excluded from a routing network. A trust-based routing scheme is suggested to ensure secure routing. This routing scheme is divided into two stages, i.e., the Data retrieval (DR), to identify and preserve each node data transfer mechanism in a routing environment and route development stage, to predict a safe path to transmit a data packet to the target node.
2020-02-26
Kaur, Prabhjot, Kang, Sandeep Singh.  2019.  Trust Aware Routing Protocols in Wireless Body Area Networks. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :1106–1112.

The technology made it easier to design the sensors of small size such that human can easily wear/implant them on his body and free to do his regular activities without any interruption. These tiny sensors can monitor, track and record the physical and environmental changes occurred in the surrounding. It is preferred to deploy the sensors where the regular continuous interference of human is very difficult. For a quality life, healthcare is the main concern today. Wireless Body Area Networks (WBAN) can play an important role in improving the quality of life. The main contribution of this paper is to review the trust-aware routing protocols which are able to detect the malicious nodes during communication by using node's trust factor as important metric to make the node to node communication secure. In this paper, we also present an overview of the WAN, its architecture, communication technologies used, various routing parameters, applications, security issues, and challenges. We further give a brief discussion about the flaws in the existing trust-aware routing protocols of WBAN.

Saad, Muhammad, Anwar, Afsah, Ahmad, Ashar, Alasmary, Hisham, Yuksel, Murat, Mohaisen, Aziz.  2019.  RouteChain: Towards Blockchain-Based Secure and Efficient BGP Routing. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :210–218.

Routing on the Internet is defined among autonomous systems (ASes) based on a weak trust model where it is assumed that ASes are honest. While this trust model strengthens the connectivity among ASes, it results in an attack surface which is exploited by malicious entities to hijacking routing paths. One such attack is known as the BGP prefix hijacking, in which a malicious AS broadcasts IP prefixes that belong to a target AS, thereby hijacking its traffic. In this paper, we proposeRouteChain: a blockchain-based secure BGP routing system that counters BGP hijacking and maintains a consistent view of the Internet routing paths. Towards that, we leverage provenance assurance and tamper-proof properties of blockchains to augment trust among ASes. We group ASes based on their geographical (network) proximity and construct a bihierarchical blockchain model that detects false prefixes prior to their spread over the Internet. We validate strengths of our design by simulations and show its effectiveness by drawing a case study with the Youtube hijacking of 2008. Our proposed scheme is a standalone service that can be incrementally deployed without the need of a central authority.

L, Nirmala Devi, K, Venkata Subbareddy.  2019.  Secure and Composite Routing Strategy through Clustering In WSN. 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC). :119–123.

Due to openness of the deployed environment and transmission medium, Wireless Sensor Networks (WSNs) suffers from various types of security attacks including Denial of service, Sinkhole, Tampering etc. Securing WSN is achieved a greater research interest and this paper proposes a new secure routing strategy for WSNs based on trust model. In this model, initially the sensor nodes of the network are formulated as clusters. Further a trust evaluation mechanism was accomplished for every sensor node at Cluster Head level to build a secure route for data transmission from sensor node to base station. Here the trust evaluation is carried out only at cluster head and also the cluster head is chosen in such a way the node having rich resources availability. The trust evaluation is a composition of the social trust and data trust. Simulation experiments are conducted over the proposed approach and the performance is measured through the performance metrics such as network lifetime, and Malicious Detection Rate. The obtained performance metrics shows the outstanding performance of proposed approach even in the increased malicious behavior of network.

Nowak, Mateusz, Nowak, Sławomir, Domańska, Joanna.  2019.  Cognitive Routing for Improvement of IoT Security. 2019 IEEE International Conference on Fog Computing (ICFC). :41–46.

Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).

Almohaimeed, Abdulrahman, Asaduzzaman, Abu.  2019.  Incorporating Monitoring Points in SDN to Ensure Trusted Links Against Misbehaving Traffic Flows. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.

The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.

Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

Kumar, A. Ranjith, Sivagami, A..  2019.  Balanced Load Clustering with Trusted Multipath Relay Routing Protocol for Wireless Sensor Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–6.

Clustering is one of an eminent mechanism which deals with large number of nodes and effective consumption of energy in wireless sensor networks (WSN). Balanced Load Clustering is used to balance the channel bandwidth by incorporating the concept of HMAC. Presently several research studies works to improve the quality of service and energy efficiency of WSN but the security issues are not taken care of. Relay based multipath trust is one of the methods to secure the network. To this end, a novel approach called Balanced Load Clustering with Trusted Multipath Relay Routing Protocol (BLC-TMR2) to improve the performance of the network. The proposed protocol consists of two algorithms. Initially in order to reduce the energy consumption of the network, balanced load clustering (BLC) concepts is introduced. Secondly to secure the network from the malicious activity trusted multipath relay routing protocol (TMR2) is used. Multipath routing is monitored by the relay node and it computed the trust values. Network simulation (NS2) software is used to obtain the results and the results prove that the proposed system performs better the earlier methods the in terms of efficiency, consumption, QoS and throughput.

Zhong, Xiaoxiong, Lu, Renhao, Li, Li, Wang, Xinghan, Zheng, Yanbin.  2019.  DSOR: A Traffic-Differentiated Secure Opportunistic Routing with Game Theoretic Approach in MANETs. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–6.

Recently, the increase of different services makes the design of routing protocols more difficult in mobile ad hoc networks (MANETs), e.g., how to guarantee the QoS of different types of traffics flows in MANETs with resource constrained and malicious nodes. opportunistic routing (OR) can make full use of the broadcast characteristics of wireless channels to improve the performance of MANETs. In this paper, we propose a traffic-differentiated secure opportunistic routing from a game theoretic perspective, DSOR. In the proposed scheme, we use a novel method to calculate trust value, considering node's forwarding capability and the status of different types of flows. According to the resource status of the network, we propose a service price and resource price for the auction model, which is used to select optimal candidate forwarding sets. At the same time, the optimal bid price has been proved and a novel flow priority decision for transmission is presented, which is based on waiting time and requested time. The simulation results show that the network lifetime, packet delivery rate and delay of the DSOR are better than existing works.

Wang, Jun-Wei, Jiang, Yu-Ting, Liu, Zhe.  2019.  A Trusted Routing Mechanism for Mobile Social Networks. 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). :365–369.

In recent years, mobile social networks (MSNs) have developed rapidly and their application fields are becoming more and more widespread. Due to the continuous movement of nodes in mobile social networks, the network topology is very unstable. How to ensure the credibility of network communication is a subject worth studying. In this paper, based on the characteristics of mobile social networks, the definition of trust level is introduced into the DSR routing protocol, and a trusted DSR routing mechanism (TDR) is proposed. The scheme combines the sliding window model to design the calculation method of trust level between nodes and path trust level. The nodes in the network participate in the routing process according to their trust level. When the source node receives multiple routes carried by the response, the appropriate trusted path is selected according to the path trust level. Through simulation analysis, compared with the original DSR protocol, the TDR protocol improves the performance of average delay, route cost and packet delivery fraction, and verifies the reliability and credibility of the TDR protocol.

Tandon, Aditya, Srivastava, Prakash.  2019.  Trust-Based Enhanced Secure Routing against Rank and Sybil Attacks in IoT. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–7.

The Internet of Things (IoT) is an emerging technology that plays a vital role in interconnecting various objects into a network to provide desired services within its resource constrained characteristics. In IoT, the Routing Protocol for Low power and Lossy network (RPL) is the standardized proactive routing protocol that achieves satisfying resource consumption, but it does not consider the node's routing behavior for forwarding data packets. The malicious intruders exploit these loopholes for launching various forms of routing attacks. Different security mechanisms have been introduced for detecting these attacks singly. However, the launch of multiple attacks such as Rank attack and Sybil attacks simultaneously in the IoT network is one of the devastating and destructive situations. This problem can be solved by establishing secure routing with trustworthy nodes. The trustworthiness of the nodes is determined using trust evaluation methods, where the parameters considered are based on the factors that influence in detecting the attacks. In this work, Providing Routing Security using the Technique of Collective Trust (PROTECT) mechanism is introduced, and it aims to provide a secure RPL routing by simultaneously detecting both Rank and Sybil attacks in the network. The advantage of the proposed scheme is highlighted by comparing its performance with the performance of the Sec-Trust protocol in terms of detection accuracy, energy consumption, and throughput.

Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.

2019-03-11
Raj, R. V., Balasubramanian, K., Nandhini, T..  2018.  Establishing Trust by Detecting Malicious Nodes in Delay Tolerant Network. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1385–1390.
A Network consists of many nodes among which there may be a presence of misbehavior nodes. Delay Tolerant Network (DTN) is a network where the disconnections occur frequently. Store, carry and forward method is followed in DTN. The serious threat against routing in DTN is the selfish behavior. The main intention of selfish node is to save its own energy. Detecting the selfish node in DTN is very difficult. In this paper, a probabilistic misbehavior detection scheme called MAXTRUST has been proposed. Trusted Authority (TA) has been introduced in order to detect the behavior of the nodes periodically based on the task, forwarding history and contact history evidence. After collecting all the evidences from the nodes, the TA would check the inspection node about its behavior. The actions such as punishment or compensation would be given to that particular node based on its behavior. The TA performs probabilistic checking, in order to ensure security at a reduced cost. To further improve the efficiency, dynamic probabilistic inspection has been demonstrated using game theory analysis. The simulation results show the effectiveness and efficiency of the MAXTRUST scheme.