Visible to the public Biblio

Filters: Keyword is emergency management  [Clear All Filters]
2021-04-08
Dinh, N., Tran, M., Park, Y., Kim, Y..  2020.  An Information-centric NFV-based System Implementation for Disaster Management Services. 2020 International Conference on Information Networking (ICOIN). :807–810.
When disasters occur, they not only affect the human life. Therefore, communication in disaster management is very important. During the disaster recovery phase, the network infrastructure may be partially fragmented and mobile rescue operations may involve many teams with different roles which can dynamically change. Therefore, disaster management services require high flexibility both in terms of network infrastructure management and rescue group communication. Existing studies have shown that IP-based or traditional telephony solutions are not well-suited to deal with such flexible group communication and network management due to their connection-oriented communication, no built-in support for mobile devices, and no mechanism for network fragmentation. Recent studies show that information-centric networking offers scalable and flexible communication based on its name-based interest-oriented communication approach. However, considering the difficulty of deploying a new service on the existing network, the programmability and virtualization of the network are required. This paper presents our implementation of an information-centric disaster management system based on network function virtualization (vICSNF). We show a proof-of-concept system with a case study for Seoul disaster management services. The system achieves flexibility both in terms of network infrastructure management and rescue group communication. Obtained testbed results show that vICSNF achieves a low communication overhead compared to the IP-based approach and the auto-configuration of vICSNFs enables the quick deployment for disaster management services in disaster scenarios.
2020-12-14
Lee, M.-F. R., Chien, T.-W..  2020.  Artificial Intelligence and Internet of Things for Robotic Disaster Response. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS). :1–6.
After the Fukushima nuclear disaster and the Wenchuan earthquake, the relevant government agencies recognized the urgency of disaster-straining robots. There are many natural or man-made disasters in Taiwan, and it is usually impossible to dispatch relevant personnel to search or explore immediately. The project proposes to use the architecture of Intelligent Internet of Things (AIoT) (Artificial Intelligence + Internet of Things) to coordinate with ground, surface and aerial and underwater robots, and apply them to disaster response, ground, surface and aerial and underwater swarm robots to collect environmental big data from the disaster site, and then through the Internet of Things. From the field workstation to the cloud for “training” deep learning model and “model verification”, the trained deep learning model is transmitted to the field workstation via the Internet of Things, and then transmitted to the ground, surface and aerial and underwater swarm robots for on-site continuing objects classification. Continuously verify the “identification” with the environment and make the best decisions for the response. The related tasks include monitoring, search and rescue of the target.
2020-11-02
Thurston, K. H., Leon, D. Conte de.  2019.  MACH-2K Architecture: Building Mobile Device Trust and Utility for Emergency Response Networks. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :152–157.
In this article, we introduce the MACH-2K trust overlay network and its architecture. MACH-2K's objectives are to (a) enhance the resiliency of emergency response and public service networks and (b) help build such networks in places, or at times, where network infrastructure is limited. Resiliency may be enhanced in an economic manner by building new ad hoc networks of private mobile devices and joining these to public service networks at specific trusted points. The major barrier to building resiliency by using private devices is ensuring security. MACH-2K uses device location and communication utility patterns to assign trust to devices, after owner approval. After trust is established, message confidentiality, privacy, and integrity may be implemented by well-known cryptographic means. MACH-2K devices may be then requested to forward or consume different types of messages depending on their current level of trust and utility.
2020-10-06
Dattana, Vishal, Gupta, Kishu, Kush, Ashwani.  2019.  A Probability based Model for Big Data Security in Smart City. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1—6.

Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.

2020-07-24
Voronkov, Oleg Yu..  2019.  Synergetic Synthesis of the Hierarchical Control System of the “Flying Platform”. 2019 III International Conference on Control in Technical Systems (CTS). :23—26.
The work is devoted to the synthesis of an aircraft control system using a synergetic control theory. The paper contains a general description of the apparatus and its control system, a synthesis of control laws, and a computer simulation. The relevance of the work consists in the need to create a vertically take-off aircraft of the “flying platform” type in order to increase the efficiency of rescue operations in disaster zones where helicopters and other modern means can't cope with the task. The scientific novelty of the work consists in the application of synergetic approaches to the development of a hierarchical system for balancing the vehicle spatial position and to the coordinating energy-saving control of electric motors that receive energy from a turbine generator.
2020-05-11
Üzüm, İbrahim, Can, Özgü.  2018.  An anomaly detection approach for enterprise file integration. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–4.
An information system based on real-time file integrations has an important role in today's organizations' work process management. By connecting to the network, file flow and integration between corporate systems have gained a great significance. In addition, network and security issues have emerged depending on the file structure and transfer processes. Thus, there has become a need for an effective and self-learning anomaly detection module for file transfer processes in order to provide the persistence of integration channels, accountability of transfer logs and data integrity. This paper proposes a novel anomaly detection approach that focuses on file size and integration duration of file transfers between enterprise systems. For this purpose, size and time anomalies on transferring files will be detected by a machine learning-based structure. Later, an alarm system is going to be developed in order to inform the authenticated individuals about the anomalies.
2020-02-17
Gharehbaghi, Koorosh, Myers, Matt.  2019.  Intelligent System Intricacies: Safety, Security and Risk Management Apprehensions of ITS. 2019 8th International Conference on Industrial Technology and Management (ICITM). :37–40.
While the general idea of Intelligent Transportation System (ITS) is to employ suitable, sophisticated information and communications technologies, however, such tool also encompass many system complexities. Fittingly, this paper aims to highlight the most contemporary system complications of ITS and in doing so, will also underline the safety, security and risk management concerns. More importantly, effectively treating such issues will ultimately improve the reliability and efficiency of transportation systems. Whereas such issues are among the most significant subjects for any intelligent system, for ITS in particular they the most dominant. For such intelligent systems, the safety, security and risk management issues must not only be decidedly prioritized, but also methodically integrated. As a part of such ITS integration, this paper will delicately examine the Emergency Management System (EMS) development and application. Accurate EMS is not only a mandatory feature of intelligent systems, but it is a fundamental component of ITS which will vigilantly respond to safety, security and risk management apprehensions. To further substantiate such scheme, the Sydney Metro's EMS will be also conferred. It was determined that, the Sydney Metro's EMS although highly advanced, it was also vigilantly aligned with specific designated safety, security and risk management strategies.
2020-01-27
Xue, Hong, Wang, Jingxuan, Zhang, Miao, Wu, Yue.  2019.  Emergency Severity Assessment Method for Cluster Supply Chain Based on Cloud Fuzzy Clustering Algorithm. 2019 Chinese Control Conference (CCC). :7108–7114.

Aiming at the composite uncertainty characteristics and high-dimensional data stream characteristics of the evaluation index with both ambiguity and randomness, this paper proposes a emergency severity assessment method for cluster supply chain based on cloud fuzzy clustering algorithm. The summary cloud model generation algorithm is created. And the multi-data fusion method is applied to the cloud model processing of the evaluation indexes for high-dimensional data stream with ambiguity and randomness. The synopsis data of the emergency severity assessment indexes are extracted. Based on time attenuation model and sliding window model, the data stream fuzzy clustering algorithm for emergency severity assessment is established. The evaluation results are rationally optimized according to the generalized Euclidean distances of the cluster centers and cluster microcluster weights, and the severity grade of cluster supply chain emergency is dynamically evaluated. The experimental results show that the proposed algorithm improves the clustering accuracy and reduces the operation time, as well as can provide more accurate theoretical support for the early warning decision of cluster supply chain emergency.

2018-01-23
AbuAli, N. A., Taha, A. E. M..  2017.  A dynamic scalable scheme for managing mixed crowds. 2017 IEEE International Conference on Communications (ICC). :1–5.

Crowd management in urban settings has mostly relied on either classical, non-automated mechanisms or spontaneous notifications/alerts through social networks. Such management techniques are heavily marred by lack of comprehensive control, especially in terms of averting risks in a manner that ensures crowd safety and enables prompt emergency response. In this paper, we propose a Markov Decision Process Scheme MDP to realize a smart infrastructure that is directly aimed at crowd management. A key emphasis of the scheme is a robust and reliable scalability that provides sufficient flexibility to manage a mixed crowd (i.e., pedestrian, cyclers, manned vehicles and unmanned vehicles). The infrastructure also spans various population settings (e.g., roads, buildings, game arenas, etc.). To realize a reliable and scalable crowd management scheme, the classical MDP is decomposed into Local MDPs with smaller action-state spaces. Preliminarily results show that the MDP decomposition can reduce the system global cost and facilitate fast convergence to local near-optimal solution for each L-MDP.

2015-05-06
Hardy, T.L..  2014.  Resilience: A holistic safety approach. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-6.

Decreasing the potential for catastrophic consequences poses a significant challenge for high-risk industries. Organizations are under many different pressures, and they are continuously trying to adapt to changing conditions and recover from disturbances and stresses that can arise from both normal operations and unexpected events. Reducing risks in complex systems therefore requires that organizations develop and enhance traits that increase resilience. Resilience provides a holistic approach to safety, emphasizing the creation of organizations and systems that are proactive, interactive, reactive, and adaptive. This approach relies on disciplines such as system safety and emergency management, but also requires that organizations develop indicators and ways of knowing when an emergency is imminent. A resilient organization must be adaptive, using hands-on activities and lessons learned efforts to better prepare it to respond to future disruptions. It is evident from the discussions of each of the traits of resilience, including their limitations, that there are no easy answers to reducing safety risks in complex systems. However, efforts to strengthen resilience may help organizations better address the challenges associated with the ever-increasing complexities of their systems.