Biblio
We propose and demonstrate a set of microservice-based security components able to perform physical layer security assessment and mitigation in optical networks. Results illustrate the scalability of the attack detection mechanism and the agility in mitigating attacks.
There is an inevitable trade-off between spatial and spectral resolutions in optical remote sensing images. A number of data fusion techniques of multimodal images with different spatial and spectral characteristics have been developed to generate optical images with both spatial and spectral high resolution. Although some of the techniques take the spectral and spatial blurring process into account, there is no method that attempts to retrieve an optical image with both spatial and spectral high resolution, a spectral blurring filter and a spectral response simultaneously. In this paper, we propose a new framework of spatial resolution enhancement by a fusion of multiple optical images with different characteristics based on tensor decomposition. An optical image with both spatial and spectral high resolution, together with a spatial blurring filter and a spectral response, is generated via canonical polyadic (CP) decomposition of a set of tensors. Experimental results featured that relatively reasonable results were obtained by regularization based on nonnegativity and coupling.
Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.
Recent progress in style transfer on images has focused on improving the quality of stylized images and speed of methods. However, real-time methods are highly unstable resulting in visible flickering when applied to videos. In this work we characterize the instability of these methods by examining the solution set of the style transfer objective. We show that the trace of the Gram matrix representing style is inversely related to the stability of the method. Then, we present a recurrent convolutional network for real-time video style transfer which incorporates a temporal consistency loss and overcomes the instability of prior methods. Our networks can be applied at any resolution, do not require optical flow at test time, and produce high quality, temporally consistent stylized videos in real-time.
We show high confinement thermally tunable, low loss (0.27 ± 0.04 dB/cm) Si3N4waveguides that are 42 cm long. We show that this platform can enable the miniaturization of traditionally bulky active OCT components.
We demonstrate high-speed operation of ultracompact electroabsorption modulators based on epsilon-near-zero confinement in indium oxide (In$_\textrm2$$_\textrm3$\$) on silicon using field-effect carrier density tuning. Additionally, we discuss strategies to enhance modulator performance and reduce confinement-related losses by introducing high-mobility conducting oxides such as cadmium oxide (CdO).
Physical attacks against cryptographic devices typically take advantage of information leakage (e.g., side-channels attacks) or erroneous computations (e.g., fault injection attacks). Preventing or detecting these attacks has become a challenging task in modern cryptographic research. In this context intrinsic physical properties of integrated circuits, such as Physical(ly) Unclonable Functions (PUFs), can be used to complement classical cryptographic constructions, and to enhance the security of cryptographic devices. PUFs have recently been proposed for various applications, including anti-counterfeiting schemes, key generation algorithms, and in the design of block ciphers. However, currently only rudimentary security models for PUFs exist, limiting the confidence in the security claims of PUF-based security primitives. A useful model should at the same time (i) define the security properties of PUFs abstractly and naturally, allowing to design and formally analyze PUF-based security solutions, and (ii) provide practical quantification tools allowing engineers to evaluate PUF instantiations. In this paper, we present a formal foundation for security primitives based on PUFs. Our approach requires as little as possible from the physics and focuses more on the main properties at the heart of most published works on PUFs: robustness (generation of stable answers), unclonability (not provided by algorithmic solutions), and unpredictability. We first formally define these properties and then show that they can be achieved by previously introduced PUF instantiations. We stress that such a consolidating work allows for a meaningful security analysis of security primitives taking advantage of physical properties, becoming increasingly important in the development of the next generation secure information systems.