Visible to the public Biblio

Filters: Keyword is Dynamical Systems  [Clear All Filters]
2017-05-17
Kwon, Yonghwi, Kim, Dohyeong, Sumner, William Nick, Kim, Kyungtae, Saltaformaggio, Brendan, Zhang, Xiangyu, Xu, Dongyan.  2016.  LDX: Causality Inference by Lightweight Dual Execution. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :503–515.

Causality inference, such as dynamic taint anslysis, has many applications (e.g., information leak detection). It determines whether an event e is causally dependent on a preceding event c during execution. We develop a new causality inference engine LDX. Given an execution, it spawns a slave execution, in which it mutates c and observes whether any change is induced at e. To preclude non-determinism, LDX couples the executions by sharing syscall outcomes. To handle path differences induced by the perturbation, we develop a novel on-the-fly execution alignment scheme that maintains a counter to reflect the progress of execution. The scheme relies on program analysis and compiler transformation. LDX can effectively detect information leak and security attacks with an average overhead of 6.08% while running the master and the slave concurrently on separate CPUs, much lower than existing systems that require instruction level monitoring. Furthermore, it has much better accuracy in causality inference.

2017-04-03
Purvine, Emilie, Johnson, John R., Lo, Chaomei.  2016.  A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks. Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :45–52.

Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.

2017-03-08
Ahmad, A. A., Günlük, O..  2015.  Robust-to-dynamics linear programming. 2015 54th IEEE Conference on Decision and Control (CDC). :5915–5919.

We consider a class of robust optimization problems that we call “robust-to-dynamics optimization” (RDO). The input to an RDO problem is twofold: (i) a mathematical program (e.g., an LP, SDP, IP, etc.), and (ii) a dynamical system (e.g., a linear, nonlinear, discrete, or continuous dynamics). The objective is to maximize over the set of initial conditions that forever remain feasible under the dynamics. The focus of this paper is on the case where the optimization problem is a linear program and the dynamics are linear. We establish some structural properties of the feasible set and prove that if the linear system is asymptotically stable, then the RDO problem can be solved in polynomial time. We also outline a semidefinite programming based algorithm for providing upper bounds on robust-to-dynamics linear programs.

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2014.  Proofs from Simulations and Modular Annotations. 17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014).

We present a modular technique for simulation-based bounded verification for nonlinear dynamical systems. We introduce the notion of input-to-state discrepancy of each subsystem Ai in a larger nonlinear dynamical system A which bounds the distance between two (possibly diverging) trajectories of Ai in terms of their initial states and inputs. Using the IS discrepancy functions, we construct a low dimensional deter- ministic dynamical system M (δ). For any two trajectories of A starting δ distance apart, we show that one of them bloated by a factor determined by the trajectory of M con- tains the other. Further, by choosing appropriately small δ’s the overapproximations computed by the above method can be made arbitrarily precise. Using the above results we de- velop a sound and relatively complete algorithm for bounded safety verification of nonlinear ODEs. Our preliminary ex- periments with a prototype implementation of the algorithm show that the approach can be effective for verification of nonlinear models.