Visible to the public Biblio

Filters: Keyword is Dynamical Systems  [Clear All Filters]
2019-05-01
Yagoub, Mohammed Amine, Laouid, Abdelkader, Kazar, Okba, Bounceur, Ahcène, Euler, Reinhardt, AlShaikh, Muath.  2018.  An Adaptive and Efficient Fully Homomorphic Encryption Technique. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :35:1–35:6.

The huge amount of generated data offers special advantages mainly in dynamic and scalable systems. In fact, the data generator entities need to share the generated data with each other which leads to the use of cloud services. A cloud server is considered as an untrusted entity that offers many advantages such as large storing space, computation speed... etc. Hence, there is a need to cope with how to protect the stored data in the cloud server by proposing adaptive solutions. The main objective is how to provide an encryption scheme allowing the user to maintains some functions such as addition, multiplication and to preserve the order on the encrypted cloud data. Many algorithms and techniques are designed to manipulate the stored encrypted cloud data. This paper presents an adaptive and efficient fully homomorphic encryption technique to protect the user's data stored in the cloud, where the cloud server executes simple operations.

Chen, Huashan, Cho, Jin-Hee, Xu, Shouhuai.  2018.  Quantifying the Security Effectiveness of Firewalls and DMZs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :9:1–9:11.

Firewalls and Demilitarized Zones (DMZs) are two mechanisms that have been widely employed to secure enterprise networks. Despite this, their security effectiveness has not been systematically quantified. In this paper, we make a first step towards filling this void by presenting a representational framework for investigating their security effectiveness in protecting enterprise networks. Through simulation experiments, we draw useful insights into the security effectiveness of firewalls and DMZs. To the best of our knowledge, these insights were not reported in the literature until now.

Arefi, Meisam Navaki, Alexander, Geoffrey, Crandall, Jedidiah R..  2018.  PIITracker: Automatic Tracking of Personally Identifiable Information in Windows. Proceedings of the 11th European Workshop on Systems Security. :3:1–3:6.
Personally Identifiable Information (PII) is information that can be used on its own or with other information to distinguish or trace an individual's identity. To investigate an application for PII tracking, a reverse engineer has to put considerable effort to reverse engineer an application and discover what an application does with PII. To automate this process and save reverse engineers substantial time and effort, we propose PIITracker which is a new and novel tool that can track PII automatically and capture if any processes are sending PII over the network. This is made possible by 1) whole-system dynamic information flow tracking 2) monitoring specific function and system calls. We analyzed 15 popular chat applications and browsers using PIITracker, and determined that 12 of these applications collect some form of PII.
Fang, Aidong, Zhang, Zhiwei.  2018.  Research on Parallel Dynamic Encryption Transmission Algorithm on VoIP. Proceedings of the 2018 International Conference on Information Science and System. :204–206.
Aiming to the current lack of VoIP voice encryption, a dynamic encryption method on grouping voice encryption and parallel encrypted is proposed in this paper. Though dynamic selection of encryption algorithms and dynamic distribution of key to increase the complexity of the encryption, at the same time reduce the time complexity of asymmetric encryption algorithm by using parallel encryption to ensure the real-time of the voice and improve call security.
Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.

2018-09-28
Wei, P., Xia, B., Luo, X..  2017.  Parameter estimation and convergence analysis for a class of canonical dynamic systems by extended kalman filter. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). :336–340.

There were many researches about the parameter estimation of canonical dynamic systems recently. Extended Kalman filter (EKF) is a popular parameter estimation method in virtue of its easy applications. This paper focuses on parameter estimation for a class of canonical dynamic systems by EKF. By constructing associated differential equation, the convergence of EKF parameter estimation for the canonical dynamic systems is analyzed. And the simulation demonstrates the good performance.

Demkiv, L., Lozynskyy, A., Lozynskyy, O., Demkiv, I..  2017.  A new approach to dynamical system's fuzzy controller synthesis: Application of the unstable subsystem. 2017 International Conference on Modern Electrical and Energy Systems (MEES). :84–87.

A general approach to the synthesis of the conditionally unstable fuzzy controller is introduced in this paper. This approach allows tuning the output signal of the system for both fast and smooth transient. Fuzzy logic allows combining the properties of several strategies of system tuning dependent on the state of the system. The utilization of instability allows achieving faster transient when the error of the system output is beyond the predefined value. Later the system roots are smoothly moved to the left-hand side of the complex s-plane due to the change of the membership function values. The results of the proposed approaches are compared with the results obtained using traditional methods of controller synthesis.

Qu, X., Mu, L..  2017.  An augmented cubature Kalman filter for nonlinear dynamical systems with random parameters. 2017 36th Chinese Control Conference (CCC). :1114–1118.

In this paper, we investigate the Bayesian filtering problem for discrete nonlinear dynamical systems which contain random parameters. An augmented cubature Kalman filter (CKF) is developed to deal with the random parameters, where the state vector is enlarged by incorporating the random parameters. The corresponding number of cubature points is increased, so the augmented CKF method requires more computational complexity. However, the estimation accuracy is improved in comparison with that of the classical CKF method which uses the nominal values of the random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and random sensor positions is provided where the simulation results illustrate that the augmented CKF method leads to a superior performance in comparison with the classical CKF method.

Dem'yanov, D. N..  2017.  Analytical synthesis of reduced order observer for estimation of the bilinear dynamic system state. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.

The problem of analytical synthesis of the reduced order state observer for the bilinear dynamic system with scalar input and vector output has been considered. Formulas for calculation of the matrix coefficients of the nonlinear observer with estimation error asymptotically approaching zero have been obtained. Two modifications of observer dynamic equation have been proposed: the first one requires differentiation of an output signal and the second one does not. Based on the matrix canonization technology, the solvability conditions for the synthesis problem and analytical expressions for an acceptable set of solutions have been received. A precise step-by-step algorithm for calculating the observer coefficients has been offered. An example of the practical use of the developed algorithm has been given.

Yang, Y., Wunsch, D., Yin, Y..  2017.  Hamiltonian-driven adaptive dynamic programming for nonlinear discrete-time dynamic systems. 2017 International Joint Conference on Neural Networks (IJCNN). :1339–1346.

In this paper, based on the Hamiltonian, an alternative interpretation about the iterative adaptive dynamic programming (ADP) approach from the perspective of optimization is developed for discrete time nonlinear dynamic systems. The role of the Hamiltonian in iterative ADP is explained. The resulting Hamiltonian driven ADP is able to evaluate the performance with respect to arbitrary admissible policies, compare two different admissible policies and further improve the given admissible policy. The convergence of the Hamiltonian ADP to the optimal policy is proven. Implementation of the Hamiltonian-driven ADP by neural networks is discussed based on the assumption that each iterative policy and value function can be updated exactly. Finally, a simulation is conducted to verify the effectiveness of the presented Hamiltonian-driven ADP.

Pavlenko, V., Speranskyy, V..  2017.  Polyharmonic test signals application for identification of nonlinear dynamical systems based on volterra model. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). :1–5.

The new criterion for selecting the frequencies of the test polyharmonic signals is developed. It allows uniquely filtering the values of multidimensional transfer functions - Fourier-images of Volterra kernel from the partial component of the response of a nonlinear system. It is shown that this criterion significantly weakens the known limitations on the choice of frequencies and, as a result, reduces the number of interpolations during the restoration of the transfer function, and, the more significant, the higher the order of estimated transfer function.

Helwa, M. K., Schoellig, A. P..  2017.  Multi-robot transfer learning: A dynamical system perspective. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :4702–4708.

Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.

Prabhakar, Pavithra, García Soto, Miriam.  2017.  Formal Synthesis of Stabilizing Controllers for Switched Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :111–120.
In this paper, we describe an abstraction-based method for synthesizing a state-based switching control for stabilizing a family of dynamical systems. Given a set of dynamical systems and a set of polyhedral switching surfaces, the algorithm synthesizes a strategy that assigns to every surface the linear dynamics to switch to at the surface. Our algorithm constructs a finite game graph that consists of the switching surfaces as the existential nodes and the choices of the dynamics as the universal nodes. In addition, the edges capture quantitative information about the evolution of the distance of the state from the equilibrium point along the executions. A switching strategy for the family of dynamical systems is extracted by finding a strategy on the game graph which results in plays having a bounded weight. Such a strategy is obtained by reducing the problem to the strategy synthesis for an energy game, which is a well-studied problem in the literature. We have implemented our algorithm for polyhedral inclusion dynamics and linear dynamics. We illustrate our algorithm on examples from these two classes of systems.
Abdelbari, Hassan, Shafi, Kamran.  2017.  A Genetic Programming Ensemble Method for Learning Dynamical System Models. Proceedings of the 8th International Conference on Computer Modeling and Simulation. :47–51.
Modelling complex dynamical systems plays a crucial role to understand several phenomena in different domains such as physics, engineering, biology and social sciences. In this paper, a genetic programming ensemble method is proposed to learn complex dynamical systems' underlying mathematical models, represented as differential equations, from systems' time series observations. The proposed method relies on decomposing the modelling space based on given variable dependencies. An ensemble of learners is then applied in this decomposed space and their output is combined to generate the final model. Two examples of complex dynamical systems are used to test the performance of the proposed methodology where the standard genetic programming method has struggled to find matching model equations. The empirical results show the effectiveness of the proposed methodology in learning closely matching structure of almost all system equations.
Kung, Jaeha, Long, Yun, Kim, Duckhwan, Mukhopadhyay, Saibal.  2017.  A Programmable Hardware Accelerator for Simulating Dynamical Systems. Proceedings of the 44th Annual International Symposium on Computer Architecture. :403–415.
The fast and energy-efficient simulation of dynamical systems defined by coupled ordinary/partial differential equations has emerged as an important problem. The accelerated simulation of coupled ODE/PDE is critical for analysis of physical systems as well as computing with dynamical systems. This paper presents a fast and programmable accelerator for simulating dynamical systems. The computing model of the proposed platform is based on multilayer cellular nonlinear network (CeNN) augmented with nonlinear function evaluation engines. The platform can be programmed to accelerate wide classes of ODEs/PDEs by modulating the connectivity within the multilayer CeNN engine. An innovative hardware architecture including data reuse, memory hierarchy, and near-memory processing is designed to accelerate the augmented multilayer CeNN. A dataflow model is presented which is supported by optimized memory hierarchy for efficient function evaluation. The proposed solver is designed and synthesized in 15nm technology for the hardware analysis. The performance is evaluated and compared to GPU nodes when solving wide classes of differential equations and the power consumption is analyzed to show orders of magnitude improvement in energy efficiency.
Ouaknine, Joel, Sousa-Pinto, Joao, Worrell, James.  2017.  On the Polytope Escape Problem for Continuous Linear Dynamical Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :11–17.
The Polytope Escape Problem for continuous linear dynamical systems consists of deciding, given an affine function f:Rd -\textbackslashtextgreater Rd and a convex polytope P⊆ Rd, both with rational descriptions, whether there exists an initial point x0 in P such that the trajectory of the unique solution to the differential equation: ·x(t)=f(x(t)) x 0= x0 is entirely contained in P. We show that this problem is reducible in polynomial time to the decision version of linear programming with real algebraic coefficients. The latter is a special case of the decision problem for the existential theory of real closed fields, which is known to lie between NP and PSPACE. Our algorithm makes use of spectral techniques and relies, among others, on tools from Diophantine approximation.
2018-05-09
Abate, Alessandro.  2017.  Formal Verification of Complex Systems: Model-Based and Data-Driven Methods. Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design. :91–93.

Two known shortcomings of standard techniques in formal verification are the limited capability to provide system-level assertions, and the scalability to large, complex models, such as those needed in Cyber-Physical Systems (CPS) applications. Leveraging data, which nowadays is becoming ever more accessible, has the potential to mitigate such limitations. However, this leads to a lack of formal proofs that are needed for modern safety-critical systems. This contribution presents a research initiative that addresses these shortcomings by bringing model-based techniques and data-driven methods together, which can help pushing the envelope of existing algorithms and tools in formal verification and thus expanding their applicability to complex engineering systems, such as CPS. In the first part of the contribution, we discuss a new, formal, measurement-driven and model-based automated technique, for the quantitative verification of physical systems with partly unknown dynamics. We formulate this setup as a data-driven Bayesian inference problem, formally embedded within a quantitative, model-based verification procedure. We argue that the approach can be applied to complex physical systems that are key for CPS applications, dealing with spatially continuous variables, evolving under complex dynamics, driven by external inputs, and accessed under noisy measurements. In the second part of the contribution, we concentrate on systems represented by models that evolve under probabilistic and heterogeneous (continuous/discrete - that is "hybrid" - as well as nonlinear) dynamics. Such stochastic hybrid models (also known as SHS) are a natural mathematical framework for CPS. With focus on model-based verification procedures, we provide algorithms for quantitative model checking of temporal specifications on SHS with formal guarantees. This is attained via the development of formal abstraction techniques that are based on quantitative approximations. Theory is complemented by algorithms, all packaged in software tools that are available to users, and which are applied here in the domain of Smart Energy.

2017-05-18
Hawkins, Byron, Demsky, Brian, Taylor, Michael B..  2016.  BlackBox: Lightweight Security Monitoring for COTS Binaries. Proceedings of the 2016 International Symposium on Code Generation and Optimization. :261–272.

After a software system is compromised, it can be difficult to understand what vulnerabilities attackers exploited. Any information residing on that machine cannot be trusted as attackers may have tampered with it to cover their tracks. Moreover, even after an exploit is known, it can be difficult to determine whether it has been used to compromise a given machine. Aviation has long-used black boxes to better understand the causes of accidents, enabling improvements that reduce the likelihood of future accidents. Many attacks introduce abnormal control flows to compromise systems. In this paper, we present BlackBox, a monitoring system for COTS software. Our techniques enable BlackBox to efficiently monitor unexpected and potentially harmful control flow in COTS binaries. BlackBox constructs dynamic profiles of an application's typical control flows to filter the vast majority of expected control flow behavior, leaving us with a manageable amount of data that can be logged across the network to remote devices. Modern applications make extensive use of dynamically generated code, some of which varies greatly between executions. We introduce support for code generators that can detect security-sensitive behaviors while allowing BlackBox to avoid logging the majority of ordinary behaviors. We have implemented BlackBox in DynamoRIO. We evaluate the runtime overhead of BlackBox, and show that it can effectively monitor recent versions of Microsoft Office and Google Chrome. We show that in ROP, COOP, and state- of-the-art JIT injection attacks, BlackBox logs the pivotal actions by which the attacker takes control, and can also blacklist those actions to prevent repeated exploits.

Dou, Yanzhi, Zeng, Kexiong(Curtis), Li, He, Yang, Yaling, Gao, Bo, Guan, Chaowen, Ren, Kui, Li, Shaoqian.  2016.  P2-SAS: Preserving Users' Privacy in Centralized Dynamic Spectrum Access Systems. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :321–330.

Centralized spectrum management is one of the key dynamic spectrum access (DSA) mechanisms proposed to govern the spectrum sharing between government incumbent users (IUs) and commercial secondary users (SUs). In the current centralized DSA designs, the operation data of both government IUs and commercial SUs needs to be shared with a central server. However, the operation data of government IUs is often classified information and the SU operation data may also be commercial secret. The current system design dissatisfies the privacy requirement of both IUs and SUs since the central server is not necessarily trust-worthy for holding such sensitive operation data. To address the privacy issue, this paper presents a privacy-preserving centralized DSA system (P2-SAS), which realizes the complex spectrum allocation process of DSA through efficient secure multi-party computation. In P2-SAS, none of the IU or SU operation data would be exposed to any snooping party, including the central server itself. We formally prove the correctness and privacy-preserving property of P2-SAS and evaluate its scalability and practicality using experiments based on real-world data. Experiment results show that P2-SAS can respond an SU's spectrum request in 6.96 seconds with communication overhead of less than 4 MB.

Meinicke, Jens, Wong, Chu-Pan, Kästner, Christian, Thüm, Thomas, Saake, Gunter.  2016.  On Essential Configuration Complexity: Measuring Interactions in Highly-configurable Systems. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :483–494.

Quality assurance for highly-configurable systems is challenging due to the exponentially growing configuration space. Interactions among multiple options can lead to surprising behaviors, bugs, and security vulnerabilities. Analyzing all configurations systematically might be possible though if most options do not interact or interactions follow specific patterns that can be exploited by analysis tools. To better understand interactions in practice, we analyze program traces to characterize and identify where interactions occur on control flow and data. To this end, we developed a dynamic analysis for Java based on variability-aware execution and monitor executions of multiple small to medium-sized programs. We find that the essential configuration complexity of these programs is indeed much lower than the combinatorial explosion of the configuration space indicates. However, we also discover that the interaction characteristics that allow scalable and complete analyses are more nuanced than what is exploited by existing state-of-the-art quality assurance strategies.

Hamlet, Jason R., Lamb, Christopher C..  2016.  Dependency Graph Analysis and Moving Target Defense Selection. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :105–116.

Moving target defense (MTD) is an emerging paradigm in which system defenses dynamically mutate in order to decrease the overall system attack surface. Though the concept is promising, implementations have not been widely adopted. The field has been actively researched for over ten years, and has only produced a small amount of extensively adopted defenses, most notably, address space layout randomization (ASLR). This is despite the fact that there currently exist a variety of moving target implementations and proofs-of-concept. We suspect that this results from the moving target controls breaking critical system dependencies from the perspectives of users and administrators, as well as making things more difficult for attackers. As a result, the impact of the controls on overall system security is not sufficient to overcome the inconvenience imposed on legitimate system users. In this paper, we analyze a successful MTD approach. We study the control's dependency graphs, showing how we use graph theoretic and network properties to predict the effectiveness of the selected control.

Wang, Huangxin, Li, Fei, Chen, Songqing.  2016.  Towards Cost-Effective Moving Target Defense Against DDoS and Covert Channel Attacks. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :15–25.

Traditionally, network and system configurations are static. Attackers have plenty of time to exploit the system's vulnerabilities and thus they are able to choose when to launch attacks wisely to maximize the damage. An unpredictable system configuration can significantly lift the bar for attackers to conduct successful attacks. Recent years, moving target defense (MTD) has been advocated for this purpose. An MTD mechanism aims to introduce dynamics to the system through changing its configuration continuously over time, which we call adaptations. Though promising, the dynamic system reconfiguration introduces overhead to the applications currently running in the system. It is critical to determine the right time to conduct adaptations and to balance the overhead afforded and the security levels guaranteed. This problem is known as the MTD timing problem. Little prior work has been done to investigate the right time in making adaptations. In this paper, we take the first step to both theoretically and experimentally study the timing problem in moving target defenses. For a broad family of attacks including DDoS attacks and cloud covert channel attacks, we model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to make adaptations with the objective of minimizing the long-term cost rate. In our experiments, both DDoS attacks and cloud covert channel attacks are studied. Simulations based on real network traffic traces are conducted and we demonstrate that our proposed algorithm outperforms known adaptation schemes.

Stanciu, Valeriu-Daniel, Spolaor, Riccardo, Conti, Mauro, Giuffrida, Cristiano.  2016.  On the Effectiveness of Sensor-enhanced Keystroke Dynamics Against Statistical Attacks. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :105–112.

In recent years, simple password-based authentication systems have increasingly proven ineffective for many classes of real-world devices. As a result, many researchers have concentrated their efforts on the design of new biometric authentication systems. This trend has been further accelerated by the advent of mobile devices, which offer numerous sensors and capabilities to implement a variety of mobile biometric authentication systems. Along with the advances in biometric authentication, however, attacks have also become much more sophisticated and many biometric techniques have ultimately proven inadequate in face of advanced attackers in practice. In this paper, we investigate the effectiveness of sensor-enhanced keystroke dynamics, a recent mobile biometric authentication mechanism that combines a particularly rich set of features. In our analysis, we consider different types of attacks, with a focus on advanced attacks that draw from general population statistics. Such attacks have already been proven effective in drastically reducing the accuracy of many state-of-the-art biometric authentication systems. We implemented a statistical attack against sensor-enhanced keystroke dynamics and evaluated its impact on detection accuracy. On one hand, our results show that sensor-enhanced keystroke dynamics are generally robust against statistical attacks with a marginal equal-error rate impact (textless0.14%). On the other hand, our results show that, surprisingly, keystroke timing features non-trivially weaken the security guarantees provided by sensor features alone. Our findings suggest that sensor dynamics may be a stronger biometric authentication mechanism against recently proposed practical attacks.

Korczyński, Maciej, Król, Micha\textbackslashl, van Eeten, Michel.  2016.  Zone Poisoning: The How and Where of Non-Secure DNS Dynamic Updates. Proceedings of the 2016 Internet Measurement Conference. :271–278.

This paper illuminates the problem of non-secure DNS dynamic updates, which allow a miscreant to manipulate DNS entries in the zone files of authoritative name servers. We refer to this type of attack as to zone poisoning. This paper presents the first measurement study of the vulnerability. We analyze a random sample of 2.9 million domains and the Alexa top 1 million domains and find that at least 1,877 (0.065%) and 587 (0.062%) of domains are vulnerable, respectively. Among the vulnerable domains are governments, health care providers and banks, demonstrating that the threat impacts important services. Via this study and subsequent notifications to affected parties, we aim to improve the security of the DNS ecosystem.

Das, Subhasis, Aamodt, Tor M., Dally, William J..  2015.  Reuse Distance-Based Probabilistic Cache Replacement. ACM Trans. Archit. Code Optim.. 12:33:1–33:22.

This article proposes Probabilistic Replacement Policy (PRP), a novel replacement policy that evicts the line with minimum estimated hit probability under optimal replacement instead of the line with maximum expected reuse distance. The latter is optimal under the independent reference model of programs, which does not hold for last-level caches (LLC). PRP requires 7% and 2% metadata overheads in the cache and DRAM respectively. Using a sampling scheme makes DRAM overhead negligible, with minimal performance impact. Including detailed overhead modeling and equal cache areas, PRP outperforms SHiP, a state-of-the-art LLC replacement algorithm, by 4% for memory-intensive SPEC-CPU2006 benchmarks.