Biblio
The concept of a microgrid has emerged as a promising solution for the management of local groups of electricity consumers and producers. The use of end-users' energy usage data can help in increasing efficient operation of a microgrid. However, existing data-aggregation schemes for a microgrid suffer different cyber attacks and do not provide high level of accuracy. This work aims at designing a privacy-preserving data-aggregation scheme for a microgrid of prosumers that achieves high level of accuracy, thereby benefiting to the management and control of a microgrid. First, a novel smart meter readings data protection mechanism is proposed to ensure privacy of prosumers by hiding the real energy usage data from other parties. Secondly, a blockchain-based data-aggregation scheme is proposed to ensure privacy of the end-users, while achieving high level of accuracy in terms of the aggregated data. The proposed data-aggregation scheme is evaluated using real smart meter readings data from 100 prosumers. The results show that the proposed scheme ensures prosumers' privacy and achieves high level of accuracy, while it is secure against eavesdropping and man-in-the-middle cyber attacks.
This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when the utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy storage system to increase energy security for facilities with critical loads. The design tool's novelty includes compliance with IEEE standards 1562 and 1013 and addresses resilience, which is not taken into account in existing design methods. Several case studies, simulated with a physics-based model, validate the proposed design method. Additionally, the design and the simulations were validated by 24-hour laboratory experiments conducted on a microgrid assembled using commercial off the shelf components.
As the power grid becomes more interconnected the attack surface increases and determining the causes of anomalies becomes more complex. Automated responses are a mechanism which can provide resilience in a power system by responding to anomalies. An automated response system can make intelligent decisions when paired with an automated health assessment system which includes a human in the loop for making critical decisions. Effective responses can be determined by developing a matrix which considers the likely impacts on resilience if a response is taken. A testbed assists to analyze these responses and determine their effects on system resilience.
Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.
Momentum towards realization of smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). The drive towards resiliency will enable a modular topology where several microgrids are tied to-gather, operating synchronously to form the future EPS. These microgrids may very well evolve to be fed by 100% Inverter Based Resources (IBRs), and required to operate reliably in both grid-connected and islanded modes. Since microgrids will evolve from existing distribution feeders, they will be unbalanced in terms of load, phases, and feeder-impedances. Protection and control of such microgrids, spanning over grid-connected mode, islanded mode, and transition mode need urgent attention. This paper focuses on the control aspect to facilitate stable operation and power sharing under these modes. A detailed EMTP model of a testbed using the IEEE 13-bus system is created in PSCAD, involving multiple inverters. Control strategy, modes, and implementation of inverter controls are described, and results showing stable operation and power sharing in all modes are presented.
This paper describes work in progress to analyze the cyber-physical resiliency of a microgrid when operated in islanded mode, as would be the case during an extreme event. The analysis must include each of the four components of a microgrid: sources or generation, energy storage, load, and power electronics interfaces. Two networks with disparate time constants must be accurately modeled. The electrical (and mechanical if there are generators or wind turbines) network is simulated with the power flow equations, a challenging control problem that requires accurate state estimation for its solution. In addition, there is the sensor-communication network consisting of legacy devices such as MV90 meters and SCADA hardware as well as IoT devices such as PMUs and grid management equipment.
This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.
In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.
Information and communication technologies are extensively used to monitor and control electric microgrids. Although, such innovation enhance self healing, resilience, and efficiency of the energy infrastructure, it brings emerging security threats to be a critical challenge. In the context of microgrid, the cyber vulnerabilities may be exploited by malicious users for manipulate system parameters, meter measurements and price information. In particular, malware may be used to acquire direct access to monitor and control devices in order to destabilize the microgrid ecosystem. In this paper, we exploit a sandbox to analyze security vulnerability to malware of involved embedded smart-devices, by monitoring at different abstraction levels potential malicious behaviors. In this direction, the CoSSMic project represents a relevant case study.
Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.
To build a resilient and secure microgrid in the face of growing cyber-attacks and cyber-mistakes, we present a software-defined networking (SDN)-based communication network architecture for microgrid operations. We leverage the global visibility, direct networking controllability, and programmability offered by SDN to investigate multiple security applications, including self-healing communication network management, real-time and uncertainty-aware communication network verification, and specification-based intrusion detection. We also expand a novel cyber-physical testing and evaluation platform that combines a power distribution system simulator (for microgrid energy services) and an SDN emulator with a distributed control environment (for microgrid communications). Experimental results demonstrate that the SDN-based communication architecture and applications can significantly enhance the resilience and security of microgrid operations against the realization of various cyber threats.
In this paper, we focus on energy management of distributed generators (DGs) and energy storage system (ESS) in microgrids (MG) considering uncertainties in renewable energy and load demand. The MG energy management problem is formulated as a two-stage stochastic programming model based on optimization principle. Then, the optimization model is decomposed into a mixed integer quadratic programming problem by using discrete stochastic scenarios to approximate the continuous random variables. A Scenarios generation approach based on time-homogeneous Markov chain model is proposed to generate simulated time-series of renewable energy generation and load demand. Finally, the proposed stochastic programming model is tested in a typical LV network and solved by Matlab optimization toolbox. The simulation results show that the proposed stochastic programming model has a better performance to obtain robust scheduling solutions and lower the operating cost compared to the deterministic optimization modeling methods.
The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.
Best Poster Award, Illinois Institute of Technology Research Day, April 11, 2016.