Biblio
Matrix factorization (MF) has been proved to be an effective approach to build a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of user-item matrix. Moreover, these methods suffer from the scalability issues when applying on large-scale real-world tasks. To tackle these issues, in this paper a social regularization method called TrustRSNMF is proposed that incorporates the social trust information of users in nonnegative matrix factorization framework. The proposed method integrates trust statements along with user-item ratings as an additional information source into the recommendation model to deal with the data sparsity and cold-start issues. In order to evaluate the effectiveness of the proposed method, a number of experiments are performed on two real-world datasets. The obtained results demonstrate significant improvements of the proposed method compared to state-of-the-art recommendation methods.
Collaborative filtering (CF) recommender system has been widely used for its well performing in personalized recommendation, but CF recommender system is vulnerable to shilling attacks in which shilling attack profiles are injected into the system by attackers to affect recommendations. Design robust recommender system and propose attack detection methods are the main research direction to handle shilling attacks, among which unsupervised PCA is particularly effective in experiment, but if we have no information about the number of shilling attack profiles, the unsupervised PCA will be suffered. In this paper, a new unsupervised detection method which combine PCA and data complexity has been proposed to detect shilling attacks. In the proposed method, PCA is used to select suspected attack profiles, and data complexity is used to pick out the authentic profiles from suspected attack profiles. Compared with the traditional PCA, the proposed method could perform well and there is no need to determine the number of shilling attack profiles in advance.
Machine-Learning-as-a-Service has become increasingly popular, with Recommendation-as-a-Service as one of the representative examples. In such services, providing privacy protection for the users is an important topic. Reviewing privacy-preserving solutions which were proposed in the past decade, privacy and machine learning are often seen as two competing goals at stake. Though improving cryptographic primitives (e.g., secure multi-party computation (SMC) or homomorphic encryption (HE)) or devising sophisticated secure protocols has made a remarkable achievement, but in conjunction with state-of-the-art recommender systems often yields far-from-practical solutions. We tackle this problem from the direction of machine learning. We aim to design crypto-friendly recommendation algorithms, thus to obtain efficient solutions by directly using existing cryptographic tools. In particular, we propose an HE-friendly recommender system, refer to as CryptoRec, which (1) decouples user features from latent feature space, avoiding training the recommendation model on encrypted data; (2) only relies on addition and multiplication operations, making the model straightforwardly compatible with HE schemes. The properties turn recommendation-computations into a simple matrix-multiplication operation. To further improve efficiency, we introduce a sparse-quantization-reuse method which reduces the recommendation-computation time by \$9$\backslash$times\$ (compared to using CryptoRec directly), without compromising the accuracy. We demonstrate the efficiency and accuracy of CryptoRec on three real-world datasets. CryptoRec allows a server to estimate a user's preferences on thousands of items within a few seconds on a single PC, with the user's data homomorphically encrypted, while its prediction accuracy is still competitive with state-of-the-art recommender systems computing over clear data. Our solution enables Recommendation-as-a-Service on large datasets in a nearly real-time (seconds) level.
Multi-Objective Recommender Systems (MO-RS) consider several objectives to produce useful recommendations. Besides accuracy, other important quality metrics include novelty and diversity of recommended lists of items. Previous research up to this point focused on naive combinations of objectives. In this paper, we present a new and adaptable strategy for prioritizing objectives focused on users' preferences. Our proposed strategy is based on meta-features, i.e., characteristics of the input data that are influential in the final recommendation. We conducted a series of experiments on three real-world datasets, from which we show that: (i) the use of meta-features leads to the improvement of the Pareto solution set in the search process; (ii) the strategy is effective at making choices according to the specificities of the users' preferences; and (iii) our approach outperforms state-of-the-art methods in MO-RS.
The present age of digital information has presented a heterogeneous online environment which makes it a formidable mission for a noble user to search and locate the required online resources timely. Recommender systems were implemented to rescue this information overload issue. However, majority of recommendation algorithms focused on the accuracy of the recommendations, leaving out other important aspects in the definition of good recommendation such as diversity and serendipity. This results in low coverage, long-tail items often are left out in the recommendations as well. In this paper, we present and explore a recommendation technique that ensures that diversity, accuracy and serendipity are all factored in the recommendations. The proposed algorithm performed comparatively well as compared to other algorithms in literature.
Route planner systems support commuters and city visitors in finding the best route between two arbitrary points. More advanced route planners integrate different transportation modes such as private transport, public transport, car- and bicycle sharing or walking and are able combine these to multi-modal routes. Nevertheless, state-of-the-art planner systems usually do not consider the users' personal preferences or the wisdom of the crowd when suggesting multi-modal routes. Including the knowledge and experience of locals who are familiar with local transport allows identification of alternative routes which are, for example, less crowded during peak hours. Collaborative filtering (CF) is a technique that allows recommending items such as multi-modal routes based on the ratings of users with similar preferences. In this paper, we introduce RouteMe, a mobile recommender system for personalized, multi-modal routes which combines CF with knowledge-based recommendations to increase the quality of route recommendations. We present our hybrid algorithm in detail and show how we integrate it in a working prototype. The results of a user study show that our prototype combining CF, knowledge-based and popular route recommendations outperforms state-of-the-art route planners.
Preparing recommendations for unknown users or such that correctly respond to the short-term needs of a particular user is one of the fundamental problems for e-commerce. Most of the common Recommender Systems assume that user identification must be explicit. In this paper a Session-Aware Recommender System approach is presented where no straightforward user information is required. The recommendation process is based only on user activity within a single session, defined as a sequence of events. This information is incorporated in the recommendation process by explicit context modeling with factorization methods and a novel approach with Recurrent Neural Network (RNN). Compared to the session modeling approach, RNN directly models the dependency of user observed sequential behavior throughout its recurrent structure. The evaluation discusses the results based on sessions from real-life system with ephemeral items (identified only by the set of their attributes) for the task of top-n best recommendations.