Visible to the public Biblio

Filters: Keyword is Computer hacking  [Clear All Filters]
2022-04-19
Tanakas, Petros, Ilias, Aristidis, Polemi, Nineta.  2021.  A Novel System for Detecting and Preventing SQL Injection and Cross-Site-Script. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–6.
SQL Injection and Cross-Site Scripting are the two most common attacks in database-based web applications. In this paper we propose a system to detect different types of SQL injection and XSS attacks associated with a web application, without the existence of any firewall, while significantly reducing the network overhead. We use properly modifications of the Nginx Reverse Proxy protocols and Suricata NIDS/ IPS rules. Pure work has been done from other researchers based on the capabilities of Nginx and Suricata and our approach with the experimental results provided in the paper demonstrate the efficiency of our system.
2022-04-13
He, Gaofeng, Si, Yongrui, Xiao, Xiancai, Wei, Qianfeng, Zhu, Haiting, Xu, Bingfeng.  2021.  Preventing IoT DDoS Attacks using Blockchain and IP Address Obfuscation. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1—5.
With the widespread deployment of Internet of Things (IoT) devices, hackers can use IoT devices to launch large-scale distributed denial of service (DDoS) attacks, which bring great harm to the Internet. However, how to defend against these attacks remains to be an open challenge. In this paper, we propose a novel prevention method for IoT DDoS attacks based on blockchain and obfuscation of IP addresses. Our observation is that IoT devices are usually resource-constrained and cannot support complicated cryptographic algorithms such as RSA. Based on the observation, we employ a novel authentication then communication mechanism for IoT DDoS attack prevention. In this mechanism, the attack targets' IP addresses are encrypted by a random security parameter. Clients need to be authenticated to obtain the random security parameter and decrypt the IP addresses. In particular, we propose to authenticate clients with public-key cryptography and a blockchain system. The complex authentication and IP address decryption operations disable IoT devices and thus block IoT DDoS attacks. The effectiveness of the proposed method is analyzed and validated by theoretical analysis and simulation experiments.
2022-03-14
Baray, Elyas, Kumar Ojha, Nitish.  2021.  ‘WLAN Security Protocols and WPA3 Security Approach Measurement Through Aircrack-ng Technique’. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :23–30.
From the beginning of technology and Wi-Fi based systems wireless networks had a prominent threat upon data security. Without security measures many organizations contribute on these flaws of security to make it better. There are many vulnerabilities of security models which are discussed in this article such as hacking through Wi-Fi security by Aircrack-ng, previous security model vulnerabilities and also the performance of Aircrack-ng attack on Wi-Fi modem or routers. In order to crack WPA/WPA2, kali Linux operating system will be needed along with Aircrack-ng packages installed on any compatible PC. Some of the new standard WPA3 such like downgrade problem on which the system will let the device to downgrade from WPA3 to WPA2 in order to connect with incompatible devise. Further, it makes a way for hackers to obtain Wi-Fi passwords even from new model defined such as WPA3 by using old techniques. The new model introduced Wi-Fi security protocol WPA3 is also no longer a secure model it can be penetrated. Researchers have discovered some new vulnerability enables hackers to get out the Wi-Fi passwords.
R, Padmashri., Srinivasulu, Senduru, Raj, Jeberson Retna, J, Jabez., Gowri, S..  2021.  Perceptual Image Hashing Using Surffor Feature Extraction and Ensemble Classifier. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :41—44.

Image hash regimes have been widely used for authenticating content, recovery of images and digital forensics. In this article we propose a new algorithm for image haunting (SSL) with the most stable key points and regional features, strong against various manipulation of content conservation, including multiple combinatorial manipulations. In order to extract most stable keypoint, the proposed algorithm combines the Speed Up Robust Features (SURF) with Saliency detection. The keyboards and characteristics of the local area are then combined in a hash vector. There is also a sperate secret key that is randomly given for the hash vector to prevent an attacker from shaping the image and the new hash value. The proposed hacking algorithm shows that similar or initial images, which have been individually manipulated, combined and even multiple manipulated contents, can be visently identified by experimental result. The probability of collision between hacks of various images is almost nil. Furthermore, the key-dependent security assessment shows the proposed regime safe to allow an attacker without knowing the secret key not to forge or estimate the right havoc value.

2022-03-01
Kaur, Rajwinder, Kaur Sandhu, Jasminder.  2021.  A Study on Security Attacks in Wireless Sensor Network. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :850–855.
Wireless Sensor Network (WSN)is the most promising area which is widely used in the field of military, healthcare systems, flood control, and weather forecasting system. In WSN every node is connected with another node and exchanges the information from one to another. While sending data between nodes data security is an important factor. Security is a vital issue in the area of networking. This paper addresses the issue of security in terms of distinct attacks and their solutions provided by the different authors. Whenever data is transferred from source to destination then it follows some route so there is a possibility of a malicious node in the network. It is a very difficult task to identify the malicious node present in the network. Insecurity intruder attacks on data packets that are transferred from one node to another node. While transferring the data from source to destination node hacker hacks the data and changes the actual data. In this paper, we have discussed the numerous security solution provided by the different authors and they had used the Machine Learning (ML) approach to handle the attacks. Various ML techniques are used to determine the authenticity of the node. Network attacks are elaborated according to the layer used for WSN architecture. In this paper, we will categorize the security attacks according to layer-wise and type-wise and represent the solution using the ML technique for handling the security attack.
Thu Hien, Do Thi, Do Hoang, Hien, Pham, Van-Hau.  2021.  Empirical Study on Reconnaissance Attacks in SDN-Aware Network for Evaluating Cyber Deception. 2021 RIVF International Conference on Computing and Communication Technologies (RIVF). :1–6.
Thanks to advances in network architecture with Software-Defined Networking (SDN) paradigm, there are various approaches for eliminating attack surface in the largescale networks relied on the essence of the SDN principle. They are ranging from intrusion detection to moving target defense, and cyber deception that leverages the network programmability. Therein, cyber deception is considered as a proactive defense strategy for the usual network operation since it makes attackers spend more time and effort to successfully compromise network systems. In this paper, we concentrate on reconnaissance attacks in SDN-enabled networks to collect the sensitive information for hackers to conduct further attacks. In more details, we introduce SDNRecon tool to perform reconnaissance attacks, which can be useful in evaluating cyber deception techniques deployed in SDN-aware networks.
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.
2022-02-03
Mafioletti, Diego Rossi, de Mello, Ricardo Carminati, Ruffini, Marco, Frascolla, Valerio, Martinello, Magnos, Ribeiro, Moises R. N..  2021.  Programmable Data Planes as the Next Frontier for Networked Robotics Security: A ROS Use Case. 2021 17th International Conference on Network and Service Management (CNSM). :160—165.
In-Network Computing is a promising field that can be explored to leverage programmable network devices to offload computing towards the edge of the network. This has created great interest in supporting a wide range of network functionality in the data plane. Considering a networked robotics domain, this brings new opportunities to tackle the communication latency challenges. However, this approach opens a room for hardware-level exploits, with the possibility to add a malicious code to the network device in a hidden fashion, compromising the entire communication in the robotic facilities. In this work, we expose vulnerabilities that are exploitable in the most widely used flexible framework for writing robot software, Robot Operating System (ROS). We focus on ROS protocol crossing a programmable SmartNIC as a use case for In-Network Hijacking and In-Network Replay attacks, that can be easily implemented using the P4 language, exposing security vulnerabilities for hackers to take control of the robots or simply breaking the entire system.
Yankson, Benjamin, K, Javed Vali, Hung, Patrick C. K., Iqbal, Farkhund, Ali, Liaqat.  2021.  Security Assessment for Zenbo Robot Using Drozer and mobSF Frameworks. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—7.
These days, almost everyone has been entirely relying on mobile devices and mobile related applications running on Android Operating Systems, the most used Mobile Operating System in the world with the largest market share. These Mobile devices and applications can become an information goldmine for hackers and are considered one of the significant concerns mobile users face who stand a chance of being victimized during data breach from hackers due to lapse in information security and controls. Such challenge can be put to bare through systematic digital forensic analysis through penetration testing for a humanoid robot like Zenbo, which run Android OS and related application, to help identify associated security vulnerabilities and develop controls required to improve security using popular penetration testing tools such as Drozer, Mobile Application Security framework (mobSF), and AndroBugs with the help of Santoku Linux distribution.
2022-01-11
Lee, Yun-kyung, Kim, Young-ho, Kim, Jeong-nyeo.  2021.  IoT Standard Platform Architecture That Provides Defense against DDoS Attacks. 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :1–3.
IoT devices have evolved with the goal of becoming more connected. However, for security it is necessary to reduce the attack surface by allowing only necessary devices to be connected. In addition, as the number of IoT devices increases, DDoS attacks targeting IoT devices also increase. In this paper, we propose a method to apply the zero trust concept of SDP as a way to enhance security and prevent DDoS attacks in the IoT device network to which the OCF platform, one of the IoT standard platforms, is applied. The protocol proposed in this paper needs to perform additional functions in IoT devices, and the processing overhead due to the functions is 62.6ms on average. Therefore, by applying the method proposed in this paper, although there is a small amount of processing overhead, DDoS attacks targeting the IoT network can be defended and the security of the IoT network can be improved.
2022-01-10
Mehra, Ankush, Badotra, Sumit.  2021.  Artificial Intelligence Enabled Cyber Security. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :572–575.
In the digital era, cyber security has become a serious problem. Information penetrates, wholesale fraud, manual human test breaking, and other comparable occurrences proliferate, influencing a large number of individuals just as organizations. The hindrances have consistently been endless in creating appropriate controls and procedures and putting them in place with utmost precision in order to deal with cyber-attacks. To recent developments in artificial intelligence, the danger of cyber - attacks has increased drastically. AI has affected everything from healthcare to robots. Because malicious hackers couldn't keep this ball of fire from them, ``normal'' cyber-attacks have grown in to the ``intelligent'' cyber attacks. In this paper, The most promising artificial intelligence approaches are discussed. Researchers look at how such techniques may be used for cyber security. At last, the conversation concludes with a discussion about artificial intelligence's future and cyber security.
Paul, Avishek, Islam, Md Rabiul.  2021.  An Artificial Neural Network Based Anomaly Detection Method in CAN Bus Messages in Vehicles. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–5.

Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).

2021-12-20
D'Agostino, Jack, Kul, Gokhan.  2021.  Toward Pinpointing Data Leakage from Advanced Persistent Threats. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :157–162.
Advanced Persistent Threats (APT) consist of most skillful hackers who employ sophisticated techniques to stealthily gain unauthorized access to private networks and exfiltrate sensitive data. When their existence is discovered, organizations - if they can sustain business continuity - mostly have to perform forensics activities to assess the damage of the attack and discover the extent of sensitive data leakage. In this paper, we construct a novel framework to pinpoint sensitive data that may have been leaked in such an attack. Our framework consists of creating baseline fingerprints for each workstation for setting normal activity, and we consider the change in the behavior of the network overall. We compare the accused fingerprint with sensitive database information by utilizing both Levenstein distance and TF-IDF/cosine similarity resulting in a similarity percentage. This allows us to pinpoint what part of data was exfiltrated by the perpetrators, where in the network the data originated, and if that data is sensitive to the private company's network. We then perform feasibility experiments to show that even these simple methods are feasible to run on a network representative of a mid-size business.
2021-11-30
Alkaeed, Mahdi, Soliman, Md Mohiuddin, Khan, Khaled M., Elfouly, Tarek M..  2020.  Distributed Framework via Block-Chain Smart Contracts for Smart Grid Systems against Cyber-Attacks. 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC). :100–105.
In this century, the demand for energy is increasing daily, and the need for energy resources has become urgent and inevitable. New ways of generating energy, such as renewable resources that depend on many sources, including the sun and wind energy will contribute to the future of humankind largely and effectively. These renewable sources are facing major challenges that cannot be ignored which also require more researches on appropriate solutions . This has led to the emergence of a new type of network user called prosumer, which causes new challenges such as the intermittent nature of renewable. Smart grids have emerged as a solution to integrate these distributed energy sources. It also provides a mechanism to maintain safety and security for power supply networks. The main idea of smart grids is to facilitate local production and consumption By customers and consumers.Distributed ledger technology (DLT) or Block-chain technology has evolved dramatically since 2008 that coincided with the birth of its first application Bitcoin, which is the first cryptocurrency. This innovation led to sparked in the digital revolution, which provides decentralization, security, and democratization of information storage and transfer systems across numerous sectors/industries. Block-chain can be applied for the sake of the durability and safety of energy systems. In this paper, we will propose a new distributed framework that provides protection based on block-chain technology for energy systems to enhance self-defense capability against those cyber-attacks.
2021-10-12
Tavakolan, Mona, Faridi, Ismaeel A..  2020.  Applying Privacy-Aware Policies in IoT Devices Using Privacy Metrics. 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). :1–5.
In recent years, user's privacy has become an important aspect in the development of Internet of Things (IoT) devices. However, there has been comparatively little research so far that aims to understanding user's privacy in connection with IoT. Many users are worried about protecting their personal information, which may be gathered by IoT devices. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value. In this paper, we present a new method for applying the user's preferences within the privacy-aware policies in IoT devices. Users can prioritize a set of extendable privacy policies based on their preferences. This is achieved by assigning weights to these policies to form ranking criteria. A privacy-aware index is then calculated based on these ranking. In addition, IoT devices can be clustered based on their privacy-aware index value.
2021-09-07
Priya, S.Shanmuga, Sivaram, M., Yuvaraj, D., Jayanthiladevi, A..  2020.  Machine Learning Based DDOS Detection. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :234–237.
One of a high relentless attack is the crucial distributed DoS attacks. The types and tools for this attacks increases day-to-day as per the technology increases. So the methodology for detection of DDoS should be advanced. For this purpose we created an automated DDoS detector using ML which can run on any commodity hardware. The results are 98.5 % accurate. We use three classification algorithms KNN, RF and NB to classify DDoS packets from normal packets using two features, delta time and packet size. This detector mostly can detect all types of DDoS such as ICMP flood, TCP flood, UDP flood etc. In the older systems they detect only some types of DDoS attacks and some systems may require a large number of features to detect DDoS. Some systems may work only with certain protocols only. But our proposed model overcome these drawbacks by detecting the DDoS of any type without a need of specific protocol that uses less amount of features.
2021-07-27
Chaudhry, Y. S., Sharma, U., Rana, A..  2020.  Enhancing Security Measures of AI Applications. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :713—716.
Artificial Intelligence also often referred to as machine learning is being labelled to as the future has been into light since more than a decade. Artificial Intelligence designated by the acronym AI has a vast scope of development and the developers have been working on with it constantly. AI is being associated with the existing objects in the world as well as with the ones that are about to arrive to improve them and make them more reliable. AI as it states in its name is intelligence, intelligence shown by the machines to work similar to humans and work on achieving the goals they are being provided with. Another application of AI could be to provide defenses against the present cyber threats, vehicle overrides etc. Also, AI might be intelligence but, in the end, it's still a bunch of codes, hence it is prone to be corrupted or misused by the world. To prevent the misuse of the technologies, it is necessary to deploy them with a sustainable defensive system as well. Obviously, there is going to be a default defense system but it is prone to be corrupted by the hackers or malfunctioning of the intelligence in certain scenarios which can result disastrous especially in case of Robotics. A proposal referred to as the “Guard Masking” has been offered in the following paper, to provide an alternative for securing Artificial Intelligence.
2021-05-20
Heydari, Vahid.  2020.  A New Security Framework for Remote Patient Monitoring Devices. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.

Digital connectivity is fundamental to the health care system to deliver safe and effective care. However, insecure connectivity could be a major threat to patient safety and privacy (e.g., in August 2017, FDA recalled 465,000 pacemakers because of discovering security flaws). Although connecting a patient's pacemaker to the Internet has many advantages for monitoring the patient, this connectivity opens a new door for cyber-attackers to steal the patient data or even control the pacemaker or damage it. Therefore, patients are forced to choose between connectivity and security. This paper presents a framework for secure and private communications between wearable medical devices and patient monitoring systems. The primary objective of this research is twofold, first to identify and analyze the communication vulnerabilities, second, to develop a framework for combating unauthorized access to data through the compromising of computer security. Specifically, hiding targets from cyber-attackers could prevent our system from future cyber-attacks. This is the most effective way to stop cyber-attacks in their first step.

2021-04-08
Xingjie, F., Guogenp, W., ShiBIN, Z., ChenHAO.  2020.  Industrial Control System Intrusion Detection Model based on LSTM Attack Tree. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :255–260.
With the rapid development of the Industrial Internet, the network security risks faced by industrial control systems (ICSs) are becoming more and more intense. How to do a good job in the security protection of industrial control systems is extremely urgent. For traditional network security, industrial control systems have some unique characteristics, which results in traditional intrusion detection systems that cannot be directly reused on it. Aiming at the industrial control system, this paper constructs all attack paths from the hacker's perspective through the attack tree model, and uses the LSTM algorithm to identify and classify the attack behavior, and then further classify the attack event by extracting atomic actions. Finally, through the constructed attack tree model, the results are reversed and predicted. The results show that the model has a good effect on attack recognition, and can effectively analyze the hacker attack path and predict the next attack target.
2021-03-29
Malek, Z. S., Trivedi, B., Shah, A..  2020.  User behavior Pattern -Signature based Intrusion Detection. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :549—552.

Technology advancement also increases the risk of a computer's security. As we can have various mechanisms to ensure safety but still there have flaws. The main concerned area is user authentication. For authentication, various biometric applications are used but once authentication is done in the begging there was no guarantee that the computer system is used by the authentic user or not. The intrusion detection system (IDS) is a particular procedure that is used to identify intruders by analyzing user behavior in the system after the user logged in. Host-based IDS monitors user behavior in the computer and identify user suspicious behavior as an intrusion or normal behavior. This paper discusses how an expert system detects intrusions using a set of rules as a pattern recognized engine. We propose a PIDE (Pattern Based Intrusion Detection) model, which is verified previously implemented SBID (Statistical Based Intrusion Detection) model. Experiment results indicate that integration of SBID and PBID approach provides an extensive system to detect intrusion.

2021-03-17
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

2021-03-15
Wang, B., Dou, Y., Sang, Y., Zhang, Y., Huang, J..  2020.  IoTCMal: Towards A Hybrid IoT Honeypot for Capturing and Analyzing Malware. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.

2021-03-09
Memos, V. A., Psannis, K. E..  2020.  AI-Powered Honeypots for Enhanced IoT Botnet Detection. 2020 3rd World Symposium on Communication Engineering (WSCE). :64—68.

Internet of Things (IoT) is a revolutionary expandable network which has brought many advantages, improving the Quality of Life (QoL) of individuals. However, IoT carries dangers, due to the fact that hackers have the ability to find security gaps in users' IoT devices, which are not still secure enough and hence, intrude into them for malicious activities. As a result, they can control many connected devices in an IoT network, turning IoT into Botnet of Things (BoT). In a botnet, hackers can launch several types of attacks, such as the well known attacks of Distributed Denial of Service (DDoS) and Man in the Middle (MitM), and/or spread various types of malicious software (malware) to the compromised devices of the IoT network. In this paper, we propose a novel hybrid Artificial Intelligence (AI)-powered honeynet for enhanced IoT botnet detection rate with the use of Cloud Computing (CC). This upcoming security mechanism makes use of Machine Learning (ML) techniques like the Logistic Regression (LR) in order to predict potential botnet existence. It can also be adopted by other conventional security architectures in order to intercept hackers the creation of large botnets for malicious actions.

2021-01-15
Ebrahimi, M., Samtani, S., Chai, Y., Chen, H..  2020.  Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach. 2020 IEEE Security and Privacy Workshops (SPW). :20—26.

The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.

2021-01-11
Kim, Y.-K., Lee, J. J., Go, M.-H., Lee, K..  2020.  Analysis of the Asymmetrical Relationships between State Actors and APT Threat Groups. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :695–700.
During the Cold War era, countries with asymmetrical relationships often demonstrated how lower-tier nation states required the alliance and support from top-tier nation states. This statement no longer stands true as country such as North Korea has exploited global financial institutions through various malware such as WANNACRY V0, V1, V2, evtsys.exe, and BRAMBUL WORM. Top tier nation states such as the U.S. are unable to use diplomatic clout or to retaliate against the deferrer. Our study examined the affidavit filed against the North Korean hacker, Park Jin Hyok, which was provided by the FBI. Our paper focuses on the operations and campaigns that were carried out by the Lazarus Group by focusing on the key factors of the infrastructure and artifacts. Due to the nature of the cyber deterrence, deterrence in the cyber realm is far complex than the nuclear deterrence. We focused on the Sony Picture Entertainment’s incident for our study. In this study, we discuss how cyber deterrence can be employed when different nation states share an asymmetrical relationship. Furthermore, we focus on contestability and attribution that is a key factor that makes cyber deterrence difficult.