Visible to the public Biblio

Filters: Keyword is Computer hacking  [Clear All Filters]
2020-09-04
Routh, Caleb, DeCrescenzo, Brandon, Roy, Swapnoneel.  2018.  Attacks and vulnerability analysis of e-mail as a password reset point. 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1—5.
In this work, we perform security analysis of using an e-mail as a self-service password reset point, and exploit some of the vulnerabilities of e-mail servers' forgotten password reset paths. We perform and illustrate three different attacks on a personal Email account, using a variety of tools such as: public knowledge attainable through social media or public records to answer security questions and execute a social engineering attack, hardware available to the public to perform a man in the middle attack, and free software to perform a brute-force attack on the login of the email account. Our results expose some of the inherent vulnerabilities in using emails as password reset points. The findings are extremely relevant to the security of mobile devices since users' trend has leaned towards usage of mobile devices over desktops for Internet access.
Asish, Madiraju Sairam, Aishwarya, R..  2019.  Cyber Security at a Glance. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:240—245.
The privacy of people on internet is getting reduced day by day. Data records of many prestigious organizations are getting corrupted due to computer malwares. Computer viruses are becoming more advanced. Hackers are able penetrate into a network and able to manipulate data. In this paper, describes the types of malwares like Trojans, boot sector virus, polymorphic virus, etc., and some of the hacking techniques which include DOS attack, DDoS attack, brute forcing, man in the middle attack, social engineering, information gathering tools, spoofing, sniffing. Counter measures for cyber attacks include VPN, proxy, tor (browser), firewall, antivirus etc., to understand the need of cyber security.
2020-08-13
Shao, Sicong, Tunc, Cihan, Al-Shawi, Amany, Hariri, Salim.  2019.  One-Class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet Relay Chat. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Social networks are highly preferred to express opinions, share information, and communicate with others on arbitrary topics. However, the downside is that many cybercriminals are leveraging social networks for cyber-crime. Internet Relay Chat (IRC) is the important social networks which can grant the anonymity to users by allowing them to connect channels without sign-up process. Therefore, IRC has been the playground of hackers and anonymous users for various operations such as hacking, cracking, and carding. Hence, it is urgent to study effective methods which can identify the authors behind the IRC messages. In this paper, we design an autonomic IRC monitoring system, performing recursive deep learning for classifying threat levels of messages and develop a novel author verification approach with one-class classification with deep autoencoder neural networks. The experimental results show that our approach can successfully perform effective author verification for IRC users.
2020-08-10
Zhang, Hao, Li, Zhuolin, Shahriar, Hossain, Lo, Dan, Wu, Fan, Qian, Ying.  2019.  Protecting Data in Android External Data Storage. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:924–925.
Insecure data storage may open a door to malicious malware to steal users' and system sensitive information. These problems may due to developer negligence or lack of security knowledge. Android developers use various storage methods to store data. However, Attackers have attacked these vulnerable data storage. Although the developers have modified the apps after knowing the vulnerability, the user's personal information has been leaked and caused serious consequences. As a result, instead of patching and fixing the vulnerability, we should conduct proactive control for secure Android data storage. In this paper, we analyzed Android external storage vulnerability and discussed the prevention solutions to prevent sensitive information in external storage from disclosure.
2020-07-20
Boumiza, Safa, Braham, Rafik.  2019.  An Anomaly Detector for CAN Bus Networks in Autonomous Cars based on Neural Networks. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
The domain of securing in-vehicle networks has attracted both academic and industrial researchers due to high danger of attacks on drivers and passengers. While securing wired and wireless interfaces is important to defend against these threats, detecting attacks is still the critical phase to construct a robust secure system. There are only a few results on securing communication inside vehicles using anomaly-detection techniques despite their efficiencies in systems that need real-time detection. Therefore, we propose an intrusion detection system (IDS) based on Multi-Layer Perceptron (MLP) neural network for Controller Area Networks (CAN) bus. This IDS divides data according to the ID field of CAN packets using K-means clustering algorithm, then it extracts suitable features and uses them to train and construct the neural network. The proposed IDS works for each ID separately and finally it combines their individual decisions to construct the final score and generates alert in the presence of attack. The strength of our intrusion detection method is that it works simultaneously for two types of attacks which will eliminate the use of several separate IDS and thus reduce the complexity and cost of implementation.
2020-07-10
Tahir, Rashid, Durrani, Sultan, Ahmed, Faizan, Saeed, Hammas, Zaffar, Fareed, Ilyas, Saqib.  2019.  The Browsers Strike Back: Countering Cryptojacking and Parasitic Miners on the Web. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :703—711.

With the recent boom in the cryptocurrency market, hackers have been on the lookout to find novel ways of commandeering users' machine for covert and stealthy mining operations. In an attempt to expose such under-the-hood practices, this paper explores the issue of browser cryptojacking, whereby miners are secretly deployed inside browser code without the knowledge of the user. To this end, we analyze the top 50k websites from Alexa and find a noticeable percentage of sites that are indulging in this exploitative exercise often using heavily obfuscated code. Furthermore, mining prevention plug-ins, such as NoMiner, fail to flag such cleverly concealed instances. Hence, we propose a machine learning solution based on hardware-assisted profiling of browser code in real-time. A fine-grained micro-architectural footprint allows us to classify mining applications with \textbackslashtextgreater99% accuracy and even flags them if the mining code has been heavily obfuscated or encrypted. We build our own browser extension and show that it outperforms other plug-ins. The proposed design has negligible overhead on the user's machine and works for all standard off-the-shelf CPUs.

Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

2020-07-06
Lakhno, Valeriy, Kasatkin, Dmytro, Blozva, Andriy.  2019.  Modeling Cyber Security of Information Systems Smart City Based on the Theory of Games and Markov Processes. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :497–501.
The article considers some aspects of modeling information security circuits for information and communication systems used in Smart City. As a basic research paradigm, the postulates of game theory and mathematical dependencies based on Markov processes were used. Thus, it is possible to sufficiently substantively describe the procedure for selecting rational variants of cyber security systems used to protect information technologies in Smart City. At the same time, using the model proposed by us, we can calculate the probability of cyber threats for the Smart City systems, as well as the cybernetic risks of diverse threats. Further, on the basis of the described indicators, rational contour options are chosen to protect the information systems used in Smart City.
2020-06-03
Duy, Phan The, Do Hoang, Hien, Thu Hien, Do Thi, Ba Khanh, Nguyen, Pham, Van-Hau.  2019.  SDNLog-Foren: Ensuring the Integrity and Tamper Resistance of Log Files for SDN Forensics using Blockchain. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS). :416—421.

Despite bringing many benefits of global network configuration and control, Software Defined Networking (SDN) also presents potential challenges for both digital forensics and cybersecurity. In fact, there are various attacks targeting a range of vulnerabilities on vital elements of this paradigm such as controller, Northbound and Southbound interfaces. In addition to solutions of security enhancement, it is important to build mechanisms for digital forensics in SDN which provide the ability to investigate and evaluate the security of the whole network system. It should provide features of identifying, collecting and analyzing log files and detailed information about network devices and their traffic. However, upon penetrating a machine or device, hackers can edit, even delete log files to remove the evidences about their presence and actions in the system. In this case, securing log files with fine-grained access control in proper storage without any modification plays a crucial role in digital forensics and cybersecurity. This work proposes a blockchain-based approach to improve the security of log management in SDN for network forensics, called SDNLog-Foren. This model is also evaluated with different experiments to prove that it can help organizations keep sensitive log data of their network system in a secure way regardless of being compromised at some different components of SDN.

2020-05-11
Peng, Wang, Kong, Xiangwei, Peng, Guojin, Li, Xiaoya, Wang, Zhongjie.  2019.  Network Intrusion Detection Based on Deep Learning. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :431–435.
With the continuous development of computer network technology, security problems in the network are emerging one after another, and it is becoming more and more difficult to ignore. For the current network administrators, how to successfully prevent malicious network hackers from invading, so that network systems and computers are at Safe and normal operation is an urgent task. This paper proposes a network intrusion detection method based on deep learning. This method uses deep confidence neural network to extract features of network monitoring data, and uses BP neural network as top level classifier to classify intrusion types. The method was validated using the KDD CUP'99 dataset from the Lincoln Laboratory of the Massachusetts Institute of Technology. The results show that the proposed method has a significant improvement over the traditional machine learning accuracy.
2020-04-17
Gorbenko, Anatoliy, Romanovsky, Alexander, Tarasyuk, Olga, Biloborodov, Oleksandr.  2020.  From Analyzing Operating System Vulnerabilities to Designing Multiversion Intrusion-Tolerant Architectures. IEEE Transactions on Reliability. 69:22—39.

This paper analyzes security problems of modern computer systems caused by vulnerabilities in their operating systems (OSs). Our scrutiny of widely used enterprise OSs focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities Database and the Common Vulnerabilities and Exposures System. The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of OSs. This leads us to analyzing how different intrusion-tolerant architectures deploying the OS diversity impact availability, integrity, and confidentiality.

2020-02-10
Taher, Kazi Abu, Nahar, Tahmin, Hossain, Syed Akhter.  2019.  Enhanced Cryptocurrency Security by Time-Based Token Multi-Factor Authentication Algorithm. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :308–312.
A noble multi-factor authentication (MFA) algorithm is developed for the security enhancement of the Cryptocurrency (CR). The main goal of MFA is to set up extra layer of safeguard while seeking access to a targets such as physical location, computing device, network or database. MFA security scheme requires more than one method for the validation from commutative family of credentials to verify the user for a transaction. MFA can reduce the risk of using single level password authentication by introducing additional factors of authentication. MFA can prevent hackers from gaining access to a particular account even if the password is compromised. The superfluous layer of security introduced by MFA offers additional security to a user. MFA is implemented by using time-based onetime password (TOTP) technique. For logging to any entity with MFA enabled, the user first needs username and password, as a second factor, the user then needs the MFA token to virtually generate a TOTP. It is found that MFA can provide a better means of secured transaction of CR.
2020-01-28
Xuan, Shichang, Wang, Huanhong, Gao, Duo, Chung, Ilyong, Wang, Wei, Yang, Wu.  2019.  Network Penetration Identification Method Based on Interactive Behavior Analysis. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :210–215.

The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.

2020-01-20
Ou, Chung-Ming.  2019.  Host-based Intrusion Detection Systems Inspired by Machine Learning of Agent-Based Artificial Immune Systems. 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.

An adaptable agent-based IDS (AAIDS) inspired by the danger theory of artificial immune system is proposed. The learning mechanism of AAIDS is designed by emulating how dendritic cells (DC) in immune systems detect and classify danger signals. AG agent, DC agent and TC agent coordinate together and respond to system calls directly rather than analyze network packets. Simulations show AAIDS can determine several critical scenarios of the system behaviors where packet analysis is impractical.

2019-12-18
Zadig, Sean M., Tejay, Gurvirender.  2010.  Securing IS assets through hacker deterrence: A case study. 2010 eCrime Researchers Summit. :1–7.
Computer crime is a topic prevalent in both the research literature and in industry, due to a number of recent high-profile cyber attacks on e-commerce organizations. While technical means for defending against internal and external hackers have been discussed at great length, researchers have shown a distinct preference towards understanding deterrence of the internal threat and have paid little attention to external deterrence. This paper uses the criminological thesis known as Broken Windows Theory to understand how external computer criminals might be deterred from attacking a particular organization. The theory's focus upon disorder as a precursor to crime is discussed, and the notion of decreasing public IS disorder to create the illusion of strong information systems security is examined. A case study of a victim e-commerce organization is reviewed in light of the theory and implications for research and practice are discussed.
2019-08-05
Gerard, B., Rebaï, S. B., Voos, H., Darouach, M..  2018.  Cyber Security and Vulnerability Analysis of Networked Control System Subject to False-Data Injection. 2018 Annual American Control Conference (ACC). :992-997.

In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach.

2019-05-08
Yaseen, Q., Alabdulrazzaq, A., Albalas, F..  2019.  A Framework for Insider Collusion Threat Prediction and Mitigation in Relational Databases. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0721–0727.

This paper proposes a framework for predicting and mitigating insider collusion threat in relational database systems. The proposed model provides a robust technique for database architect and administrators to predict insider collusion threat when designing database schema or when granting privileges. Moreover, it proposes a real time monitoring technique that monitors the growing knowledgebases of insiders while executing transactions and the possible collusion insider attacks that may be launched based on insiders accesses and inferences. Furthermore, the paper proposes a mitigating technique based on the segregation of duties principle and the discovered collusion insider threat to mitigate the problem. The proposed model was tested to show its usefulness and applicability.

2019-03-15
Noor, U., Anwar, Z., Noor, U., Anwar, Z., Rashid, Z..  2018.  An Association Rule Mining-Based Framework for Profiling Regularities in Tactics Techniques and Procedures of Cyber Threat Actors. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-6.

Tactics Techniques and Procedures (TTPs) in cyber domain is an important threat information that describes the behavior and attack patterns of an adversary. Timely identification of associations between TTPs can lead to effective strategy for diagnosing the Cyber Threat Actors (CTAs) and their attack vectors. This study profiles the prevalence and regularities in the TTPs of CTAs. We developed a machine learning-based framework that takes as input Cyber Threat Intelligence (CTI) documents, selects the most prevalent TTPs with high information gain as features and based on them mine interesting regularities between TTPs using Association Rule Mining (ARM). We evaluated the proposed framework with publicly available TTPbased CTI documents. The results show that there are 28 TTPs more prevalent than the other TTPs. Our system identified 155 interesting association rules among the TTPs of CTAs. A summary of these rules is given to effectively investigate threats in the network.

Deliu, I., Leichter, C., Franke, K..  2018.  Collecting Cyber Threat Intelligence from Hacker Forums via a Two-Stage, Hybrid Process Using Support Vector Machines and Latent Dirichlet Allocation. 2018 IEEE International Conference on Big Data (Big Data). :5008-5013.

Traditional security controls, such as firewalls, anti-virus and IDS, are ill-equipped to help IT security and response teams keep pace with the rapid evolution of the cyber threat landscape. Cyber Threat Intelligence (CTI) can help remediate this problem by exploiting non-traditional information sources, such as hacker forums and "dark-web" social platforms. Security and response teams can use the collected intelligence to identify emerging threats. Unfortunately, when manual analysis is used to extract CTI from non-traditional sources, it is a time consuming, error-prone and resource intensive process. We address these issues by using a hybrid Machine Learning model that automatically searches through hacker forum posts, identifies the posts that are most relevant to cyber security and then clusters the relevant posts into estimations of the topics that the hackers are discussing. The first (identification) stage uses Support Vector Machines and the second (clustering) stage uses Latent Dirichlet Allocation. We tested our model, using data from an actual hacker forum, to automatically extract information about various threats such as leaked credentials, malicious proxy servers, malware that evades AV detection, etc. The results demonstrate our method is an effective means for quickly extracting relevant and actionable intelligence that can be integrated with traditional security controls to increase their effectiveness.

2019-03-04
Herald, N. E., David, M. W..  2018.  A Framework for Making Effective Responses to Cyberattacks. 2018 IEEE International Conference on Big Data (Big Data). :4798–4805.
The process for determining how to respond to a cyberattack involves evaluating many factors, including some with competing risks. Consequentially, decision makers in the private sector and policymakers in the U.S. government (USG) need a framework in order to make effective response decisions. The authors' research identified two competing risks: 1) the risk of not responding forcefully enough to deter a suspected attacker, and 2) responding in a manner that escalates a situation with an attacker. The authors also identified three primary factors that influence these risks: attribution confidence/time, the scale of the attack, and the relationship with the suspected attacker. This paper provides a framework to help decision makers understand how these factors interact to influence the risks associated with potential response options to cyberattacks. The views expressed do not reflect the official policy or position of the National Intelligence University, the Department of Defense, the U.S. Intelligence Community, or the U.S. Government.
2019-02-25
Ojagbule, O., Wimmer, H., Haddad, R. J..  2018.  Vulnerability Analysis of Content Management Systems to SQL Injection Using SQLMAP. SoutheastCon 2018. :1–7.

There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.

Vyamajala, S., Mohd, T. K., Javaid, A..  2018.  A Real-World Implementation of SQL Injection Attack Using Open Source Tools for Enhanced Cybersecurity Learning. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0198–0202.

SQL injection is well known a method of executing SQL queries and retrieving sensitive information from a website connected database. This process poses a threat to those applications which are poorly coded in the today's world. SQL is considered as one of the top 10 vulnerabilities even in 2018. To keep a track of the vulnerabilities that each of the websites are facing, we employ a tool called Acunetix which allows us to find the vulnerabilities of a specific website. This tool also suggests measures on how to ensure preventive measures. Using this implementation, we discover vulnerabilities in an actual website. Such a real-world implementation would be useful for instructional use in a foundational cybersecurity course.

2019-02-08
Sekar, K. R., Gayathri, V., Anisha, G., Ravichandran, K. S., Manikandan, R..  2018.  Dynamic Honeypot Configuration for Intrusion Detection. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1397-1401.

The objective of the Honeypot security system is a mechanism to identify the unauthorized users and intruders in the network. The enterprise level security can be possible via high scalability. The whole theme behind this research is an Intrusion Detection System and Intrusion Prevention system factors accomplished through honeypot and honey trap methodology. Dynamic Configuration of honey pot is the milestone for this mechanism. Eight different methodologies were deployed to catch the Intruders who utilizing the unsecured network through the unused IP address. The method adapted here to identify and trap through honeypot mechanism activity. The result obtained is, intruders find difficulty in gaining information from the network, which helps a lot of the industries. Honeypot can utilize the real OS and partially through high interaction and low interaction respectively. The research work concludes the network activity and traffic can also be tracked through honeypot. This provides added security to the secured network. Detection, prevention and response are the categories available, and moreover, it detects and confuses the hackers.

Lihet, M., Dadarlat, P. D. V..  2018.  Honeypot in the Cloud Five Years of Data Analysis. 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1-6.

The current paper is a continuation of a published article and is about the results of implementing a Honeypot in the Cloud. A five years period of raw data is analyzed and explained in the current Cyber Security state and landscape.

Alzahrani, S., Hong, L..  2018.  Detection of Distributed Denial of Service (DDoS) Attacks Using Artificial Intelligence on Cloud. 2018 IEEE World Congress on Services (SERVICES). :35-36.

This research proposes a system for detecting known and unknown Distributed Denial of Service (DDoS) Attacks. The proposed system applies two different intrusion detection approaches anomaly-based distributed artificial neural networks(ANNs) and signature-based approach. The Amazon public cloud was used for running Spark as the fast cluster engine with varying cores of machines. The experiment results achieved the highest detection accuracy and detection rate comparing to signature based or neural networks-based approach.