Biblio
With the recent boom in the cryptocurrency market, hackers have been on the lookout to find novel ways of commandeering users' machine for covert and stealthy mining operations. In an attempt to expose such under-the-hood practices, this paper explores the issue of browser cryptojacking, whereby miners are secretly deployed inside browser code without the knowledge of the user. To this end, we analyze the top 50k websites from Alexa and find a noticeable percentage of sites that are indulging in this exploitative exercise often using heavily obfuscated code. Furthermore, mining prevention plug-ins, such as NoMiner, fail to flag such cleverly concealed instances. Hence, we propose a machine learning solution based on hardware-assisted profiling of browser code in real-time. A fine-grained micro-architectural footprint allows us to classify mining applications with \textbackslashtextgreater99% accuracy and even flags them if the mining code has been heavily obfuscated or encrypted. We build our own browser extension and show that it outperforms other plug-ins. The proposed design has negligible overhead on the user's machine and works for all standard off-the-shelf CPUs.
Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.
Despite bringing many benefits of global network configuration and control, Software Defined Networking (SDN) also presents potential challenges for both digital forensics and cybersecurity. In fact, there are various attacks targeting a range of vulnerabilities on vital elements of this paradigm such as controller, Northbound and Southbound interfaces. In addition to solutions of security enhancement, it is important to build mechanisms for digital forensics in SDN which provide the ability to investigate and evaluate the security of the whole network system. It should provide features of identifying, collecting and analyzing log files and detailed information about network devices and their traffic. However, upon penetrating a machine or device, hackers can edit, even delete log files to remove the evidences about their presence and actions in the system. In this case, securing log files with fine-grained access control in proper storage without any modification plays a crucial role in digital forensics and cybersecurity. This work proposes a blockchain-based approach to improve the security of log management in SDN for network forensics, called SDNLog-Foren. This model is also evaluated with different experiments to prove that it can help organizations keep sensitive log data of their network system in a secure way regardless of being compromised at some different components of SDN.
This paper analyzes security problems of modern computer systems caused by vulnerabilities in their operating systems (OSs). Our scrutiny of widely used enterprise OSs focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities Database and the Common Vulnerabilities and Exposures System. The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of OSs. This leads us to analyzing how different intrusion-tolerant architectures deploying the OS diversity impact availability, integrity, and confidentiality.
The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.
An adaptable agent-based IDS (AAIDS) inspired by the danger theory of artificial immune system is proposed. The learning mechanism of AAIDS is designed by emulating how dendritic cells (DC) in immune systems detect and classify danger signals. AG agent, DC agent and TC agent coordinate together and respond to system calls directly rather than analyze network packets. Simulations show AAIDS can determine several critical scenarios of the system behaviors where packet analysis is impractical.
In the present paper, the problem of networked control system (NCS) cyber security is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The proposed results are about the so-called false data injection attacks and show how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach.
This paper proposes a framework for predicting and mitigating insider collusion threat in relational database systems. The proposed model provides a robust technique for database architect and administrators to predict insider collusion threat when designing database schema or when granting privileges. Moreover, it proposes a real time monitoring technique that monitors the growing knowledgebases of insiders while executing transactions and the possible collusion insider attacks that may be launched based on insiders accesses and inferences. Furthermore, the paper proposes a mitigating technique based on the segregation of duties principle and the discovered collusion insider threat to mitigate the problem. The proposed model was tested to show its usefulness and applicability.
Tactics Techniques and Procedures (TTPs) in cyber domain is an important threat information that describes the behavior and attack patterns of an adversary. Timely identification of associations between TTPs can lead to effective strategy for diagnosing the Cyber Threat Actors (CTAs) and their attack vectors. This study profiles the prevalence and regularities in the TTPs of CTAs. We developed a machine learning-based framework that takes as input Cyber Threat Intelligence (CTI) documents, selects the most prevalent TTPs with high information gain as features and based on them mine interesting regularities between TTPs using Association Rule Mining (ARM). We evaluated the proposed framework with publicly available TTPbased CTI documents. The results show that there are 28 TTPs more prevalent than the other TTPs. Our system identified 155 interesting association rules among the TTPs of CTAs. A summary of these rules is given to effectively investigate threats in the network.
Traditional security controls, such as firewalls, anti-virus and IDS, are ill-equipped to help IT security and response teams keep pace with the rapid evolution of the cyber threat landscape. Cyber Threat Intelligence (CTI) can help remediate this problem by exploiting non-traditional information sources, such as hacker forums and "dark-web" social platforms. Security and response teams can use the collected intelligence to identify emerging threats. Unfortunately, when manual analysis is used to extract CTI from non-traditional sources, it is a time consuming, error-prone and resource intensive process. We address these issues by using a hybrid Machine Learning model that automatically searches through hacker forum posts, identifies the posts that are most relevant to cyber security and then clusters the relevant posts into estimations of the topics that the hackers are discussing. The first (identification) stage uses Support Vector Machines and the second (clustering) stage uses Latent Dirichlet Allocation. We tested our model, using data from an actual hacker forum, to automatically extract information about various threats such as leaked credentials, malicious proxy servers, malware that evades AV detection, etc. The results demonstrate our method is an effective means for quickly extracting relevant and actionable intelligence that can be integrated with traditional security controls to increase their effectiveness.
There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.
SQL injection is well known a method of executing SQL queries and retrieving sensitive information from a website connected database. This process poses a threat to those applications which are poorly coded in the today's world. SQL is considered as one of the top 10 vulnerabilities even in 2018. To keep a track of the vulnerabilities that each of the websites are facing, we employ a tool called Acunetix which allows us to find the vulnerabilities of a specific website. This tool also suggests measures on how to ensure preventive measures. Using this implementation, we discover vulnerabilities in an actual website. Such a real-world implementation would be useful for instructional use in a foundational cybersecurity course.
The objective of the Honeypot security system is a mechanism to identify the unauthorized users and intruders in the network. The enterprise level security can be possible via high scalability. The whole theme behind this research is an Intrusion Detection System and Intrusion Prevention system factors accomplished through honeypot and honey trap methodology. Dynamic Configuration of honey pot is the milestone for this mechanism. Eight different methodologies were deployed to catch the Intruders who utilizing the unsecured network through the unused IP address. The method adapted here to identify and trap through honeypot mechanism activity. The result obtained is, intruders find difficulty in gaining information from the network, which helps a lot of the industries. Honeypot can utilize the real OS and partially through high interaction and low interaction respectively. The research work concludes the network activity and traffic can also be tracked through honeypot. This provides added security to the secured network. Detection, prevention and response are the categories available, and moreover, it detects and confuses the hackers.
The current paper is a continuation of a published article and is about the results of implementing a Honeypot in the Cloud. A five years period of raw data is analyzed and explained in the current Cyber Security state and landscape.
This research proposes a system for detecting known and unknown Distributed Denial of Service (DDoS) Attacks. The proposed system applies two different intrusion detection approaches anomaly-based distributed artificial neural networks(ANNs) and signature-based approach. The Amazon public cloud was used for running Spark as the fast cluster engine with varying cores of machines. The experiment results achieved the highest detection accuracy and detection rate comparing to signature based or neural networks-based approach.