Biblio
With so much our daily lives relying on digital devices like personal computers and cell phones, there is a growing demand for code that not only functions properly, but is secure and keeps user data safe. However, ensuring this is not such an easy task, and many developers do not have the required skills or resources to ensure their code is secure. Many code analysis tools have been written to find vulnerabilities in newly developed code, but this technology tends to produce many false positives, and is still not able to identify all of the problems. Other methods of finding software vulnerabilities automatically are required. This proof-of-concept study applied natural language processing on Java byte code to locate SQL injection vulnerabilities in a Java program. Preliminary findings show that, due to the high number of terms in the dataset, using singular decision trees will not produce a suitable model for locating SQL injection vulnerabilities, while random forest structures proved more promising. Still, further work is needed to determine the best classification tool.
There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.
SQL injection is well known a method of executing SQL queries and retrieving sensitive information from a website connected database. This process poses a threat to those applications which are poorly coded in the today's world. SQL is considered as one of the top 10 vulnerabilities even in 2018. To keep a track of the vulnerabilities that each of the websites are facing, we employ a tool called Acunetix which allows us to find the vulnerabilities of a specific website. This tool also suggests measures on how to ensure preventive measures. Using this implementation, we discover vulnerabilities in an actual website. Such a real-world implementation would be useful for instructional use in a foundational cybersecurity course.
Internet users are increasing day by day. The web services and mobile web applications or desktop web application's demands are also increasing. The chances of a system being hacked are also increasing. All web applications maintain data at the backend database from which results are retrieved. As web applications can be accessed from anywhere all around the world which must be available to all the users of the web application. SQL injection attack is nowadays one of the topmost threats for security of web applications. By using SQL injection attackers can steal confidential information. In this paper, the SQL injection attack detection method by removing the parameter values of the SQL query is discussed and results are presented.
The Structured Query Language Injection Attack (SQLIA) is one of the most serious and popular threats of web applications. The results of SQLIA include the data loss or complete host takeover. Detection of SQLIA is always an intractable challenge because of the heterogeneity of the attack payloads. In this paper, a novel method to detect SQLIA based on word vector of SQL tokens and LSTM neural networks is described. In the proposed method, SQL query strings were firstly syntactically analyzed into tokens, and then likelihood ratio test is used to build the word vector of SQL tokens, ultimately, an LSTM model is trained with sequences of token word vectors. We developed a tool named WOVSQLI, which implements the proposed technique, and it was evaluated with a dataset from several sources. The results of experiments demonstrate that WOVSQLI can effectively identify SQLIA.
Data dependency flow have been reformulated as Context Free Grammar (CFG) reachability problem, and the idea was explored in detection of some web vulnerabilities, particularly Cross Site Scripting (XSS) and Access Control. However, reformulation of SQL Injection Vulnerability (SQLIV) detection as grammar reachability problem has not been investigated. In this paper, concepts of data dependency flow was used to reformulate SQLIVs detection as a CFG reachability problem. The paper, consequently defines reachability analysis strategy for SQLIVs detection.
SQL Injection continues to be one of the most damaging security exploits in terms of personal information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much current research involves the use of machine learning techniques, which are able to detect unknown attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current intrusion detection strategies involve collection of traffic coming into the web application either from a network device or from the web application host, while other strategies collect data from the database server logs. In this project, we are collecting traffic from two points: at the web application host, and at a Datiphy appliance node located between the webapp host and the associated MySQL database server. In our analysis of these two datasets, and another dataset that is correlated between the two, we have been able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-based and decision tree are nearly the same as those with a neural network algorithm, but with greatly improved performance.
SQL Injection is one of the most critical security vulnerability in web applications. Most web applications use SQL as web applications. SQL injection mainly affects these websites and web applications. An attacker can easily bypass a web applications authentication and authorization and get access to the contents they want by SQL injection. This unauthorised access helps the attacker to retrieve confidential data's, trade secrets and can even delete or modify valuable documents. Even though, to an extend many preventive measures are found, till now there are no complete solution for this problem. Hence, from the surveys and analyses done, an enhanced methodology is proposed against SQL injection disclosure and deterrence by ensuring proper authentication using Heisenberg analysis and password security using Honey pot mechanism.
Emerging computing relies heavily on secure backend storage for the massive size of big data originating from the Internet of Things (IoT) smart devices to the Cloud-hosted web applications. Structured Query Language (SQL) Injection Attack (SQLIA) remains an intruder's exploit of choice to pilfer confidential data from the back-end database with damaging ramifications. The existing approaches were all before the new emerging computing in the context of the Internet big data mining and as such will lack the ability to cope with new signatures concealed in a large volume of web requests over time. Also, these existing approaches were strings lookup approaches aimed at on-premise application domain boundary, not applicable to roaming Cloud-hosted services' edge Software-Defined Network (SDN) to application endpoints with large web request hits. Using a Machine Learning (ML) approach provides scalable big data mining for SQLIA detection and prevention. Unfortunately, the absence of corpus to train a classifier is an issue well known in SQLIA research in applying Artificial Intelligence (AI) techniques. This paper presents an application context pattern-driven corpus to train a supervised learning model. The model is trained with ML algorithms of Two-Class Support Vector Machine (TC SVM) and Two-Class Logistic Regression (TC LR) implemented on Microsoft Azure Machine Learning (MAML) studio to mitigate SQLIA. This scheme presented here, then forms the subject of the empirical evaluation in Receiver Operating Characteristic (ROC) curve.
Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).
SQL injection attack (SQLIA) pose a serious security threat to the database driven web applications. This kind of attack gives attackers easily access to the application's underlying database and to the potentially sensitive information these databases contain. A hacker through specifically designed input, can access content of the database that cannot otherwise be able to do so. This is usually done by altering SQL statements that are used within web applications. Due to importance of security of web applications, researchers have studied SQLIA detection and prevention extensively and have developed various methods. In this research, after reviewing the existing research in this field, we present a new hybrid method to reduce the vulnerability of the web applications. Our method is specifically designed to detect and prevent SQLIA. Our proposed method is consists of three phases namely, the database design, implementation, and at the common gateway interface (CGI). Details of our approach along with its pros and cons are discussed in detail.
Figuring innovations and development of web diminishes the exertion required for different procedures. Among them the most profited businesses are electronic frameworks, managing an account, showcasing, web based business and so on. This framework mostly includes the data trades ceaselessly starting with one host then onto the next. Amid this move there are such a variety of spots where the secrecy of the information and client gets loosed. Ordinarily the zone where there is greater likelihood of assault event is known as defenceless zones. Electronic framework association is one of such place where numerous clients performs there undertaking as indicated by the benefits allotted to them by the director. Here the aggressor makes the utilization of open ranges, for example, login or some different spots from where the noxious script is embedded into the framework. This scripts points towards trading off the security imperatives intended for the framework. Few of them identified with clients embedded scripts towards web communications are SQL infusion and cross webpage scripting (XSS). Such assaults must be distinguished and evacuated before they have an effect on the security and classification of the information. Amid the most recent couple of years different arrangements have been incorporated to the framework for making such security issues settled on time. Input approvals is one of the notable fields however experiences the issue of execution drops and constrained coordinating. Some other component, for example, disinfection and polluting will create high false report demonstrating the misclassified designs. At the center, both include string assessment and change investigation towards un-trusted hotspots for totally deciphering the effect and profundity of the assault. This work proposes an enhanced lead based assault discovery with specifically message fields for viably identifying the malevolent scripts. The work obstructs the ordinary access for malignant so- rce utilizing and hearty manage coordinating through unified vault which routinely gets refreshed. At the underlying level of assessment, the work appears to give a solid base to further research.
Web-Based applications are becoming more increasingly technically complex and sophisticated. The very nature of their feature-rich design and their capability to collate, process, and disseminate information over the Internet or from within an intranet makes them a popular target for attack. According to Open Web Application Security Project (OWASP) Top Ten Cheat sheet-2017, SQL Injection Attack is at peak among online attacks. This can be attributed primarily to lack of awareness on software security. Developing effective SQL injection detection approaches has been a challenge in spite of extensive research in this area. In this paper, we propose a signature based SQL injection attack detection framework by integrating fingerprinting method and Pattern Matching to distinguish genuine SQL queries from malicious queries. Our framework monitors SQL queries to the database and compares them against a dataset of signatures from known SQL injection attacks. If the fingerprint method cannot determine the legitimacy of query alone, then the Aho Corasick algorithm is invoked to ascertain whether attack signatures appear in the queries. The initial experimental results of our framework indicate the approach can identify wide variety of SQL injection attacks with negligible impact on performance.
It is a well-known fact that nowadays access to sensitive information is being performed through the use of a three-tier-architecture. Web applications have become a handy interface between users and data. As database-driven web applications are being used more and more every day, web applications are being seen as a good target for attackers with the aim of accessing sensitive data. If an organization fails to deploy effective data protection systems, they might be open to various attacks. Governmental organizations, in particular, should think beyond traditional security policies in order to achieve proper data protection. It is, therefore, imperative to perform security testing and make sure that there are no holes in the system, before an attack happens. One of the most commonly used web application attacks is by insertion of an SQL query from the client side of the application. This attack is called SQL Injection. Since an SQL Injection vulnerability could possibly affect any website or web application that makes use of an SQL-based database, the vulnerability is one of the oldest, most prevalent and most dangerous of web application vulnerabilities. To overcome the SQL injection problems, there is a need to use different security systems. In this paper, we will use 3 different scenarios for testing security systems. Using Penetration testing technique, we will try to find out which is the best solution for protecting sensitive data within the government network of Kosovo.
Use of internet increases day by day so securing network and data is a big issue. So, it is very important to maintain security to ensure safe and trusted communication of information between different organizations. Because of these IDS is a very useful component of computer and network security. IDS system is used by many organizations or industries to detect the weakness in their security, documenting previous attacks and threats and preventing all of this from violating security policies. Because of these advantages, this system is important in system security. In this paper, we find a multilevel solution for different approaches (attacks) based on intrusion detection system. In this paper, we identify different attacks and find the solutions for different type of attacks such as DDOS, SQL injection and Brute force attack. In this case, we use client-server architecture. To implement this we maintain profile of user and base on this we find normal user or attacker when system find that attack is present then it directly block the attack.
The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code.
Taint analysis has been used in numerous scripting languages such as Perl and Ruby to defend against various form of code injection attacks, such as cross-site scripting (XSS) and SQL-injection. However, most taint analysis systems simply fail when tainted information is used in a possibly unsafe manner. In this paper, we explore how precise taint tracking can be used in order to secure web content. Rather than simply crashing, we propose that a library-writer defined sanitization function can instead be used on the tainted portions of a string. With this approach, library writers or framework developers can design their tools to be resilient, even if inexperienced developers misuse these libraries in unsafe ways. In other words, developer mistakes do not have to result in system crashes to guarantee security. We implement both coarse-grained and precise taint tracking in JavaScript, and show how our precise taint tracking API can be used to defend against SQL injection and XSS attacks. We further evaluate the performance of this approach, showing that precise taint tracking involves an overhead of approximately 22%.
We present D-ForenRIA, a distributed forensic tool to automatically reconstruct user-sessions in Rich Internet Applications (RIAs), using solely the full HTTP traces of the sessions as input. D-ForenRIA recovers automatically each browser state, reconstructs the DOMs and re-creates screenshots of what was displayed to the user. The tool also recovers every action taken by the user on each state, including the user-input data. Our application domain is security forensics, where sometimes months-old sessions must be quickly reconstructed for immediate inspection. We will demonstrate our tool on a series of RIAs, including a vulnerable banking application created by IBM Security for testing purposes. In that case study, the attacker visits the vulnerable web site, and exploits several vulnerabilities (SQL-injections, XSS...) to gain access to private information and to perform unauthorized transactions. D-ForenRIA can reconstruct the session, including screenshots of all pages seen by the hacker, DOM of each page and the steps taken for unauthorized login and the inputs hacker exploited for the SQL-injection attack. D-ForenRIA is made efficient by applying advanced reconstruction techniques and by using several browsers concurrently to speed up the reconstruction process. Although we developed D-ForenRIA in the context of security forensics, the tool can also be useful in other contexts such as aided RIAs debugging and automated RIAs scanning.
After more than a decade of research, web application security continues to be a challenge and the backend database the most appetizing target. The paper proposes preventing injection attacks against the database management system (DBMS) behind web applications by embedding protections in the DBMS itself. The motivation is twofold. First, the approach of embedding protections in operating systems and applications running on top of them has been effective to protect this software. Second, there is a semantic mismatch between how SQL queries are believed to be executed by the DBMS and how they are actually executed, leading to subtle vulnerabilities in prevention mechanisms. The approach – SEPTIC – was implemented in MySQL and evaluated experimentally with web applications written in PHP and Java/Spring. In the evaluation SEPTIC has shown neither false negatives nor false positives, on the contrary of alternative approaches, causing also a low performance overhead in the order of 2.2%.
In this paper, we have mentioned a method to find the performance of projectwhich detects various web - attacks. The project is capable to identifying and preventing attacks like SQL Injection, Cross – Site Scripting, URL rewriting, Web server 400 error code etc. The performance of system is detected using the system attributes that are mentioned in this paper. This is also used to determine efficiency of the system.