Visible to the public Biblio

Found 15086 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2023-06-22
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

Rajan, Dhanya M, Sathya Priya, S.  2022.  DDoS mitigation techniques in IoT: A Survey. 2022 International Conference on IoT and Blockchain Technology (ICIBT). :1–7.
Cities are becoming increasingly smart as the Internet of Things (IoT) proliferates. With IoT devices interconnected, smart cities can offer novel and ubiquitous services as well as automate many of our daily lives (e.g., smart health, smart home). The abundance in the number of IoT devices leads to divergent types of security threats as well. One of such important attacks is the Distributed Denial of Service attack(DDoS). DDoS attacks have become increasingly common in the internet of things because of the rapid growth of insecure devices. These attacks slow down legitimate network requests. Although DDoS attacks were first reported in 1996, the sophistication of these attacks has increased significantly. In mid-August 2020, a 2 Terabytes per second(TBps) attack targeting critical infrastructure, such as finance, was reported. In the next two years, it is predicted that this number will double to 15 million attacks. Blockchain technology, whose development dates back to the advent of the internet, has become one of the most important advancements to come along since that time. Several applications can use this technology to secure exchanges. Using blockchain to mitigate DDoS attacks is discussed in this survey paper in diverse domains to date. Its purpose is to expose the strengths, weaknesses, and limitations of the different approaches to DDoS mitigation. As a research and development platform for DDoS mitigation, this paper will act as a central hub for a more comprehensive understanding of these approaches.
Ashodia, Namita, Makadiya, Kishan.  2022.  Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1175–1180.

Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.

Fenil, E., Kumar, P. Mohan.  2022.  Towards a secure Software Defined Network with Adaptive Mitigation of DDoS attacks by Machine Learning Approaches. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–13.
DDoS attacks produce a lot of traffic on the network. DDoS attacks may be fought in a novel method thanks to the rise of Software Defined Networking (SDN). DDoS detection and data gathering may lead to larger system load utilization among SDN as well as systems, much expense of SDN, slow reaction period to DDoS if they are conducted at regular intervals. Using the Identification Retrieval algorithm, we offer a new DDoS detection framework for detecting resource scarcity type DDoS attacks. In designed to check low-density DDoS attacks, we employ a combination of network traffic characteristics. The KSVD technique is used to generate a dictionary of network traffic parameters. In addition to providing legitimate and attack traffic models for dictionary construction, the suggested technique may be used to network traffic as well. Matching Pursuit and Wavelet-based DDoS detection algorithms are also implemented and compared using two separate data sets. Despite the difficulties in identifying LR-DoS attacks, the results of the study show that our technique has a detection accuracy of 89%. DDoS attacks are explained for each type of DDoS, and how SDN weaknesses may be exploited. We conclude that machine learning-based DDoS detection mechanisms and cutoff point DDoS detection techniques are the two most prevalent methods used to identify DDoS attacks in SDN. More significantly, the generational process, benefits, and limitations of each DDoS detection system are explained. This is the case in our testing environment, where the intrusion detection system (IDS) is able to block all previously identified threats
Kukreti, Sambhavi, Modgil, Sumit Kumar, Gehlot, Neha, Kumar, Vinod.  2022.  DDoS Attack using SYN Flooding: A Case Study. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :323–329.
Undoubtedly, technology has not only transformed our world of work and lifestyle, but it also carries with it a lot of security challenges. The Distributed Denial-of-Service (DDoS) attack is one of the most prominent attacks witnessed by cyberspace of the current era. This paper outlines several DDoS attacks, their mitigation stages, propagation of attacks, malicious codes, and finally provides redemptions of exhibiting normal and DDoS attacked scenarios. A case study of a SYN flooding attack has been exploited by using Metasploit. The utilization of CPU frame length and rate have been observed in normal and attacked phases. Preliminary results clearly show that in a normal scenario, CPU usage is about 20%. However, in attacked phases with the same CPU load, CPU execution overhead is nearly 90% or 100%. Thus, through this research, the major difference was found in CPU usage, frame length, and degree of data flow. Wireshark tool has been used for network traffic analyzer.
Kumar, Anmol, Somani, Gaurav.  2022.  DDoS attack mitigation in cloud targets using scale-inside out assisted container separation. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
From the past few years, DDoS attack incidents are continuously rising across the world. DDoS attackers have also shifted their target towards cloud environments as majority of services have shifted their operations to cloud. Various authors proposed distinct solutions to minimize the DDoS attacks effects on victim services and co-located services in cloud environments. In this work, we propose an approach by utilizing incoming request separation at the container-level. In addition, we advocate to employ scale-inside out [10] approach for all the suspicious requests. In this manner, we achieve the request serving of all the authenticated benign requests even in the presence of an attack. We also improve the usages of scale-inside out approach by applying it to a container which is serving the suspicious requests in a separate container. The results of our proposed technique show a significant decrease in the response time of benign users during the DDoS attack as compared with existing solutions.
Žádník, Martin.  2022.  Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
Sai, A N H Dhatreesh, Tilak, B H, Sanjith, N Sai, Suhas, Padi, Sanjeetha, R.  2022.  Detection and Mitigation of Low and Slow DDoS attack in an SDN environment. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :106–111.

Distributed Denial of Service (DDoS) attacks aim to make a server unresponsive by flooding the target server with a large volume of packets (Volume based DDoS attacks), by keeping connections open for a long time and exhausting the resources (Low and Slow DDoS attacks) or by targeting protocols (Protocol based attacks). Volume based DDoS attacks that flood the target server with a large number of packets are easier to detect because of the abnormality in packet flow. Low and Slow DDoS attacks, however, make the server unavailable by keeping connections open for a long time, but send traffic similar to genuine traffic, making detection of such attacks difficult. This paper proposes a solution to detect and mitigate one such Low and slow DDoS attack, Slowloris in an SDN (Software Defined Networking) environment. The proposed solution involves communication between the detection and mitigation module and the controller of the Software Defined Network to get data to detect and mitigate low and slow DDoS attack.

Santhosh Kumar, B.J, Sanketh Gowda, V.S.  2022.  Detection and Prevention of UDP Reflection Amplification Attack in WSN Using Cumulative Sum Algorithm. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Wireless sensor networks are used in many areas such as war field surveillance, monitoring of patient, controlling traffic, environmental and building surveillance. Wireless technology, on the other hand, brings a load of new threats with it. Because WSNs communicate across radio frequencies, they are more susceptible to interference than wired networks. The authors of this research look at the goals of WSNs in terms of security as well as DDOS attacks. The majority of techniques are available for detecting DDOS attacks in WSNs. These alternatives, on the other hand, stop the assault after it has begun, resulting in data loss and wasting limited sensor node resources. The study finishes with a new method for detecting the UDP Reflection Amplification Attack in WSN, as well as instructions on how to use it and how to deal with the case.
Muragaa, Wisam H. A.  2022.  The single packet Low-rate DDoS attack detection and prevention in SDN. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :323–328.
The new paradigm software-defined networking (SDN) supports network innovation and makes the control of network operations more agile. The flow table is the main component of SDN switch which contains a set of flow entries that define how new flows are processed. Low-rate distributed denial-of-service (LR-DDoS) attacks are difficult to detect and mitigate because they behave like legitimate users. There are many detection methods for LR DDoS attacks in the literature, but none of these methods detect single-packet LR DDoS attacks. In fact, LR DDoS attackers exploit vulnerabilities in the mechanism of congestion control in TCP to either periodically retransmit burst attack packets for a short time period or to continuously launch a single attack packet at a constant low rate. In this paper, the proposed scheme detects LR-DDoS by examining all incoming packets and filtering the single packets sent from different source IP addresses to the same destination at a constant low rate. Sending single packets at a constant low rate will increase the number of flows at the switch which can make it easily overflowed. After detecting the single attack packets, the proposed scheme prevents LR-DDoS at its early stage by deleting the flows created by these packets once they reach the threshold. According to the results of the experiment, the scheme achieves 99.47% accuracy in this scenario. In addition, the scheme has simple logic and simple calculation, which reduces the overhead of the SDN controller.
Black, Samuel, Kim, Yoohwan.  2022.  An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0791–0800.
Distributed Denial-of-Service (DDoS) attacks aim to cause downtime or a lack of responsiveness for web services. DDoS attacks targeting the application layer are amongst the hardest to catch as they generally appear legitimate at lower layers and attempt to take advantage of common application functionality or aspects of the HTTP protocol, rather than simply send large amounts of traffic like with volumetric flooding. Attacks can focus on functionality such as database operations, file retrieval, or just general backend code. In this paper, we examine common forms of application layer attacks, preventative and detection measures, and take a closer look specifically at HTTP Flooding attacks by the High Orbit Ion Cannon (HOIC) and “low and slow” attacks through slowloris.
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
Nascimento, Márcio, Araujo, Jean, Ribeiro, Admilson.  2022.  Systematic review on mitigating and preventing DDoS attacks on IoT networks. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–9.
Internet of Things (IoT) and those protocol CoAP and MQTT has security issues that have entirely changed the security strategy should be utilized and behaved for devices restriction. Several challenges have been observed in multiple domains of security, but Distributed Denial of Service (DDoS) have actually dangerous in IoT that have RT. Thus, the IoT paradigm and those protocols CoAP and MQTT have been investigated to seek whether network services could be efficiently delivered for resources usage, managed, and disseminated to the devices. Internet of Things is justifiably joined with the best practices augmentation to make this task enriched. However, factors behaviors related to traditional networks have not been effectively mitigated until now. In this paper, we present and deep, qualitative, and comprehensive systematic mapping to find the answers to the following research questions, such as, (i) What is the state-of-the-art in IoT security, (ii) How to solve the restriction devices challenges via infrastructure involvement, (iii) What type of technical/protocol/ paradigm needs to be studied, and (iv) Security profile should be taken care of, (v) As the proposals are being evaluated: A. If in simulated/virtualized/emulated environment or; B. On real devices, in which case which devices. After doing a comparative study with other papers dictate that our work presents a timely contribution in terms of novel knowledge toward an understanding of formulating IoT security challenges under the IoT restriction devices take care.
ISSN: 2166-0727
Manoj, K. Sai.  2022.  DDOS Attack Detection and Prevention using the Bat Optimized Load Distribution Algorithm in Cloud. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :633–642.
Cloud computing provides a great platform for the users to utilize the various computational services in order accomplish their requests. However it is difficult to utilize the computational storage services for the file handling due to the increased protection issues. Here Distributed Denial of Service (DDoS) attacks are the most commonly found attack which will prevent from cloud service utilization. Thus it is confirmed that the DDoS attack detection and load balancing in cloud are most extreme issues which needs to be concerned more for the improved performance. This attained in this research work by measuring up the trust factors of virtual machines in order to predict the most trustable VMs which will be combined together to form the trustable source vector. After trust evaluation, in this work Bat algorithm is utilized for the optimal load distribution which will predict the optimal VM resource for the task allocation with the concern of budget. This method is most useful in the process of detecting the DDoS attacks happening on the VM resources. Finally prevention of DDOS attacks are performed by introducing the Fuzzy Extreme Learning Machine Classifier which will learn the cloud resource setup details based on which DDoS attack detection can be prevented. The overall performance of the suggested study design is performed in a Java simulation model to demonstrate the superiority of the proposed algorithm over the current research method.
Das, Soumyajit, Dayam, Zeeshaan, Chatterjee, Pinaki Sankar.  2022.  Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
Chavan, Neeta, Kukreja, Mohit, Jagwani, Gaurav, Nishad, Neha, Deb, Namrata.  2022.  DDoS Attack Detection and Botnet Prevention using Machine Learning. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1159–1163.
One of the major threats in the cyber security and networking world is a Distributed Denial of Service (DDoS) attack. With massive development in Science and Technology, the privacy and security of various organizations are concerned. Computer Intrusion and DDoS attacks have always been a significant issue in networked environments. DDoS attacks result in non-availability of services to the end-users. It interrupts regular traffic flow and causes a flood of flooded packets, causing the system to crash. This research presents a Machine Learning-based DDoS attack detection system to overcome this challenge. For the training and testing purpose, we have used the NSL-KDD Dataset. Logistic Regression Classifier, Support Vector Machine, K Nearest Neighbour, and Decision Tree Classifier are examples of machine learning algorithms which we have used to train our model. The accuracy gained are 90.4, 90.36, 89.15 and 82.28 respectively. We have added a feature called BOTNET Prevention, which scans for Phishing URLs and prevents a healthy device from being a part of the botnet.
ISSN: 2575-7288
Tehaam, Muhammad, Ahmad, Salman, Shahid, Hassan, Saboor, Muhammad Suleman, Aziz, Ayesha, Munir, Kashif.  2022.  A Review of DDoS Attack Detection and Prevention Mechanisms in Clouds. 2022 24th International Multitopic Conference (INMIC). :1–6.
Cloud provides access to shared pool of resources like storage, networking, and processing. Distributed denial of service attacks are dangerous for Cloud services because they mainly target the availability of resources. It is important to detect and prevent a DDoS attack for the continuity of Cloud services. In this review, we analyze the different mechanisms of detection and prevention of the DDoS attacks in Clouds. We identify the major DDoS attacks in Clouds and compare the frequently-used strategies to detect, prevent, and mitigate those attacks that will help the future researchers in this area.
ISSN: 2049-3630
Lei, Gang, Wu, Junyi, Gu, Keyang, Ji, Lejun, Cao, Yuanlong, Shao, Xun.  2022.  An QUIC Traffic Anomaly Detection Model Based on Empirical Mode Decomposition. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :76–80.
With the advent of the 5G era, high-speed and secure network access services have become a common pursuit. The QUIC (Quick UDP Internet Connection) protocol proposed by Google has been studied by many scholars due to its high speed, robustness, and low latency. However, the research on the security of the QUIC protocol by domestic and foreign scholars is insufficient. Therefore, based on the self-similarity of QUIC network traffic, combined with traffic characteristics and signal processing methods, a QUIC-based network traffic anomaly detection model is proposed in this paper. The model decomposes and reconstructs the collected QUIC network traffic data through the Empirical Mode Decomposition (EMD) method. In order to judge the occurrence of abnormality, this paper also intercepts overlapping traffic segments through sliding windows to calculate Hurst parameters and analyzes the obtained parameters to check abnormal traffic. The simulation results show that in the network environment based on the QUIC protocol, the Hurst parameter after being attacked fluctuates violently and exceeds the normal range. It also shows that the anomaly detection of QUIC network traffic can use the EMD method.
ISSN: 2325-5609
Awasthi, Divyanshu, Srivastava, Vinay Kumar.  2022.  Dual Image Watermarking using Hessenberg decomposition and RDWT-DCT-SVD in YCbCr color space. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :1–6.
A dual-image watermarking approach is presented in this research. The presented work utilizes the properties of Hessenberg decomposition, Redundant discrete wavelet transform (RDWT), Discrete cosine transform (DCT) and Singular value decomposition (SVD). For watermarking, the YCbCr color space is employed. Two watermark logos are for embedding. A YCbCr format conversion is performed on the RGB input image. The host image's Y and Cb components are divided into various sub-bands using RDWT. The Hessenberg decomposition is applied on high-low and low-high components. After that, SVD is applied to get dominant matrices. Two different logos are used for watermarking. Apply RDWT on both watermark images. After that, apply DCT and SVD to get dominant matrices of logos. Add dominant matrices of input host and watermark images to get the watermarked image. Average PSNR, MSE, Structural similarity index measurement (SSIM) and Normalized correlation coefficient (NCC) are used as the performance parameters. The resilience of the presented work is tested against various attacks such as Gaussian low pass filter, Speckle noise attack, Salt and Pepper, Gaussian noise, Rotation, Median and Average filter, Sharpening, Histogram equalization and JPEG compression. The presented scheme is robust and imperceptible when compared with other schemes.
He, Yuxin, Zhuang, Yaqiang, Zhuang, Xuebin, Lin, Zijian.  2022.  A GNSS Spoofing Detection Method based on Sparse Decomposition Technique. 2022 IEEE International Conference on Unmanned Systems (ICUS). :537–542.
By broadcasting false Global Navigation Satellite System (GNSS) signals, spoofing attacks will induce false position and time fixes within the victim receiver. In this article, we propose a Sparse Decomposition (SD)-based spoofing detection algorithm in the acquisition process, which can be applied in a single-antenna receiver. In the first step, we map the Fast Fourier transform (FFT)-based acquisition result in a two-dimensional matrix, which is a distorted autocorrelation function when the receiver is under spoof attack. In the second step, the distorted function is decomposed into two main autocorrelation function components of different code phases. The corresponding elements of the result vector of the SD are the code-phase values of the spoofed and the authentic signals. Numerical simulation results show that the proposed method can not only outcome spoofing detection result, but provide reliable estimations of the code phase delay of the spoof attack.
ISSN: 2771-7372
Shams, Sulthana, Leith, Douglas J..  2022.  Improving Resistance of Matrix Factorization Recommenders To Data Poisoning Attacks. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1–4.
In this work, we conduct a systematic study on data poisoning attacks to Matrix Factorisation (MF) based Recommender Systems (RS) where a determined attacker injects fake users with false user-item feedback, with an objective to promote a target item by increasing its rating. We explore the capability of a MF based approach to reduce the impact of attack on targeted item in the system. We develop and evaluate multiple techniques to update the user and item feature matrices when incorporating new ratings. We also study the effectiveness of attack under increasing filler items and choice of target item.Our experimental results based on two real-world datasets show that the observations from the study could be used to design a more robust MF based RS.
Jamil, Huma, Liu, Yajing, Cole, Christina, Blanchard, Nathaniel, King, Emily J., Kirby, Michael, Peterson, Christopher.  2022.  Dual Graphs of Polyhedral Decompositions for the Detection of Adversarial Attacks. 2022 IEEE International Conference on Big Data (Big Data). :2913–2921.
Previous work has shown that a neural network with the rectified linear unit (ReLU) activation function leads to a convex polyhedral decomposition of the input space. These decompositions can be represented by a dual graph with vertices corresponding to polyhedra and edges corresponding to polyhedra sharing a facet, which is a subgraph of a Hamming graph. This paper illustrates how one can utilize the dual graph to detect and analyze adversarial attacks in the context of digital images. When an image passes through a network containing ReLU nodes, the firing or non-firing at a node can be encoded as a bit (1 for ReLU activation, 0 for ReLU non-activation). The sequence of all bit activations identifies the image with a bit vector, which identifies it with a polyhedron in the decomposition and, in turn, identifies it with a vertex in the dual graph. We identify ReLU bits that are discriminators between non-adversarial and adversarial images and examine how well collections of these discriminators can ensemble vote to build an adversarial image detector. Specifically, we examine the similarities and differences of ReLU bit vectors for adversarial images, and their non-adversarial counterparts, using a pre-trained ResNet-50 architecture. While this paper focuses on adversarial digital images, ResNet-50 architecture, and the ReLU activation function, our methods extend to other network architectures, activation functions, and types of datasets.
Elbasi, Ersin.  2022.  A Robust Information Hiding Scheme Using Third Decomposition Layer of Wavelet Against Universal Attacks. 2022 IEEE World AI IoT Congress (AIIoT). :611–616.
Watermarking is one of the most common data hiding techniques for multimedia elements. Broadcasting, copy control, copyright protection and authentication are the most frequently used application areas of the watermarking. Secret data can be embedded into the cover image with changing the values of the pixels in spatial domain watermarking. In addition to this method, cover image can be converted into one of the transformation such as Discrete Wavelet Transformation (DWT), Discrete Cousin Transformation (DCT) and Discrete Fourier Transformation (DFT). Later on watermark can be embedded high frequencies of transformation coefficients. In this work, cover image transformed one, two and three level DWT decompositions. Binary watermark is hided into the low and high frequencies in each decomposition. Experimental results show that watermarked image is robust, secure and resist against several geometric attacks especially JPEG compression, Gaussian noise and histogram equalization. Peak Signal-to-Noise Ratio (PSNR) and Similarity Ratio (SR) values show very optimal results when we compare the other frequency and spatial domain algorithms.