Vibhandik, Harshavardhan, Kale, Sudhanshu, Shende, Samiksha, Goudar, Mahesh.
2022.
Medical Assistance Robot with capabilities of Mask Detection with Automatic Sanitization and Social Distancing Detection/ Awareness. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :340–347.
Healthcare sectors such as hospitals, nursing homes, medical offices, and hospice homes encountered several obstacles due to the outbreak of Covid-19. Wearing a mask, social distancing and sanitization are some of the most effective methods that have been proven to be essential to minimize the virus spread. Lately, medical executives have been appointed to monitor the virus spread and encourage the individuals to follow cautious instructions that have been provided to them. To solve the aforementioned challenges, this research study proposes an autonomous medical assistance robot. The proposed autonomous robot is completely service-based, which helps to monitor whether or not people are wearing a mask while entering any health care facility and sanitizes the people after sending a warning to wear a mask by using the image processing and computer vision technique. The robot not only monitors but also promotes social distancing by giving precautionary warnings to the people in healthcare facilities. The robot can assist the health care officials carrying the necessities of the patent while following them for maintaining a touchless environment. With thorough simulative testing and experiments, results have been finally validated.
Ho, Samson, Reddy, Achyut, Venkatesan, Sridhar, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina.
2022.
Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :993–998.
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
ISSN: 2155-7586
Barlas, Efe, Du, Xin, Davis, James C..
2022.
Exploiting Input Sanitization for Regex Denial of Service. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :883–895.
Web services use server-side input sanitization to guard against harmful input. Some web services publish their sanitization logic to make their client interface more usable, e.g., allowing clients to debug invalid requests locally. However, this usability practice poses a security risk. Specifically, services may share the regexes they use to sanitize input strings - and regex-based denial of service (ReDoS) is an emerging threat. Although prominent service outages caused by ReDoS have spurred interest in this topic, we know little about the degree to which live web services are vulnerable to ReDoS. In this paper, we conduct the first black-box study measuring the extent of ReDoS vulnerabilities in live web services. We apply the Consistent Sanitization Assumption: that client-side sanitization logic, including regexes, is consistent with the sanitization logic on the server-side. We identify a service's regex-based input sanitization in its HTML forms or its API, find vulnerable regexes among these regexes, craft ReDoS probes, and pinpoint vulnerabilities. We analyzed the HTML forms of 1,000 services and the APIs of 475 services. Of these, 355 services publish regexes; 17 services publish unsafe regexes; and 6 services are vulnerable to ReDoS through their APIs (6 domains; 15 subdomains). Both Microsoft and Amazon Web Services patched their web services as a result of our disclosure. Since these vulnerabilities were from API specifications, not HTML forms, we proposed a ReDoS defense for a popular API validation library, and our patch has been merged. To summarize: in client-visible sanitization logic, some web services advertise Re-DoS vulnerabilities in plain sight. Our results motivate short-term patches and long-term fundamental solutions. “Make measurable what cannot be measured.” -Galileo Galilei
ISSN: 1558-1225
Hasegawa, Taichi, Saito, Taiichi, Sasaki, Ryoichi.
2022.
Analyzing Metadata in PDF Files Published by Police Agencies in Japan. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :145–151.
In recent years, new types of cyber attacks called targeted attacks have been observed. It targets specific organizations or individuals, while usual large-scale attacks do not focus on specific targets. Organizations have published many Word or PDF files on their websites. These files may provide the starting point for targeted attacks if they include hidden data unintentionally generated in the authoring process. Adhatarao and Lauradoux analyzed hidden data found in the PDF files published by security agencies in many countries and showed that many PDF files potentially leak information like author names, details on the information system and computer architecture. In this study, we analyze hidden data of PDF files published on the website of police agencies in Japan and compare the results with Adhatarao and Lauradoux's. We gathered 110989 PDF files. 56% of gathered PDF files contain personal names, organization names, usernames, or numbers that seem to be IDs within the organizations. 96% of PDF files contain software names.
ISSN: 2693-9371
Ramneet, Mudita, Gupta, Deepali.
2022.
ASMBoT: An Intelligent Sanitizing Robot in the Coronavirus Outbreak. 2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications (ICIDeA). :106–109.
Technology plays a vital role in our lives to meet basic hygiene necessities. Currently, the whole world is facing an epidemic situation and the practice of using sanitizers is common nowadays. Sanitizers are used by people to sanitize their hands and bodies. It is also used for sanitizing objects that come into contact with the machine. While sanitizing a small area, people manage to sanitize via pumps, but it becomes difficult to sanitize the same area every day. One of the most severe sanitation concerns is a simple, economic and efficient method to adequately clean the indoor and outdoor environments. In particular, effective sanitization is required for people working in a clinical environment. Recently, some commonly used sanitizer techniques include electric sanitizer spray guns, electric sanitizer disinfectants, etc. However, these sanitizers are not automated, which means a person is required to roam personally with the device to every place to spray the disinfectant or sanitize an area. Therefore, a novel, cost-effective automatic sanitizing machine (ASM) named ASMBoT is designed that can dispense the sanitizer effectively by solving the aforementioned problems.
Seetharaman, Sanjay, Malaviya, Shubham, Vasu, Rosni, Shukla, Manish, Lodha, Sachin.
2022.
Influence Based Defense Against Data Poisoning Attacks in Online Learning. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :1–6.
Data poisoning is a type of adversarial attack on training data where an attacker manipulates a fraction of data to degrade the performance of machine learning model. There are several known defensive mechanisms for handling offline attacks, however defensive measures for online learning, where data points arrive sequentially, have not garnered similar interest. In this work, we propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup. Our proposed method utilizes an influence function which is a classic technique in robust statistics. Further, we supplement it with the existing data sanitization methods for filtering out some of the poisoned data points. We study the effectiveness of our defense mechanism on multiple datasets and across multiple attack strategies against an online learner.
ISSN: 2155-2509
Malla, Sai Anish, Kapoor, Khushee, Kejariwal, Adithya, Rao, Vidya, Kundapur, Poornimaa Panduranga.
2022.
SWARM: Sanitizer With Attendance through Remote Monitoring. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :316–319.
With Covid19 being endemic, it is very essential to continue proper physical hygiene protocols even today to avoid escalation. To ensure hygiene inside educational institutions, many governing bodies-imposed protocols to insist students wear hand gloves and facemasks. Such an implementation, however, has increased surgical waste in and around educational institutions, and also there is a rise in allergies due to the constant use of hand gloves by the students. Hence, a prototype of a hand sanitization-based attendance monitoring system has been proposed in the current research paper. This proposed sanitizer with attendance through remote monitoring (SWARM) uses Raspberry Pi devices to capture the image of a student’s identity card holding the registration number and through a bar code analysis module of computer vision, the ID number is extracted. This ID number is compared with a master attendance file to mark the students’ presence and then the updated file is shared with the concerned teacher via email. Such a setup is installed in the laboratory premise, thereby reducing the unnecessary use and disposal of surgical waste within the educational premise.
Xu, Yi, Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.
2022.
Preserving Trajectory Privacy in Driving Data Release. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3099–3103.
Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
ISSN: 2379-190X
Raghav, Nidhi, Bhola, Anoop Kumar.
2022.
Secured framework for privacy preserving healthcare based on blockchain. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Healthcare has become one of the most important aspects of people’s lives, resulting in a surge in medical big data. Healthcare providers are increasingly using Internet of Things (IoT)-based wearable technologies to speed up diagnosis and treatment. In recent years, Through the Internet, billions of sensors, gadgets, and vehicles have been connected. One such example is for the treatment and care of patients, technology—remote patient monitoring—is already commonplace. However, these technologies also offer serious privacy and data security problems. Data transactions are transferred and logged. These medical data security and privacy issues might ensue from a pause in therapy, putting the patient’s life in jeopardy. We planned a framework to manage and analyse healthcare large data in a safe manner based on blockchain. Our model’s enhanced privacy and security characteristics are based on data sanitization and restoration techniques. The framework shown here make data and transactions more secure.
ISSN: 2329-7190
Park, Soyoung, Kim, Jongseok, Lim, Younghoon, Seo, Euiseong.
2022.
Analysis and Mitigation of Data Sanitization Overhead in DAX File Systems. 2022 IEEE 40th International Conference on Computer Design (ICCD). :255–258.
A direct access (DAX) file system maximizes the benefit of persistent memory(PM)’s low latency through removing the page cache layer from the file system access paths. However, this paper reveals that data block allocation of the DAX file systems in common is significantly slower than that of conventional file systems because the DAX file systems require the zero-out operation for the newly allocated blocks to prevent the leakage of old data previously stored in the allocated data blocks. The retarded block allocation significantly affects the file write performance. In addition to this revelation, this paper proposes an off-critical-path data block sanitization scheme tailored for DAX file systems. The proposed scheme detaches the zero-out operation from the latency-critical I/O path and performs that of released data blocks in the background. The proposed scheme’s design principle is universally applicable to most DAX file systems. For evaluation, we implemented our approach in Ext4-DAX and XFS-DAX. Our evaluation showed that the proposed scheme reduces the append write latency by 36.8%, and improved the performance of FileBench’s fileserver workload by 30.4%, YCSB’s workload A on RocksDB by 3.3%, and the Redis-benchmark by 7.4% on average, respectively.
ISSN: 2576-6996
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.
2022.
DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
Kivalov, Serhii, Strelkovskaya, Irina.
2022.
Detection and prediction of DDoS cyber attacks using spline functions. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :710–713.
The issues of development and legal regulation of cybersecurity in Ukraine are considered. The expediency of further improvement of the regulatory framework, its implementation and development of cybersecurity systems is substantiated. Further development of the theoretical base of cyber defense using spline functions is proposed. The characteristics of network traffic are considered from the point of view of detecting DDoS cyber attacks (SYN-Flood, ICMP-Flood, UDP-Flood) and predicting DDoS cyber-attacks using spline functions. The spline extrapolation method makes it possible to predict DDoS cyber attacks with great accuracy.
Zhao, Wanqi, Sun, Haoyue, Zhang, Dawei.
2022.
Research on DDoS Attack Detection Method Based on Deep Neural Network Model inSDN. 2022 International Conference on Networking and Network Applications (NaNA). :184–188.
This paper studies Distributed Denial of Service (DDoS) attack detection by adopting the Deep Neural Network (DNN) model in Software Defined Networking (SDN). We first deploy the flow collector module to collect the flow table entries. Considering the detection efficiency of the DNN model, we also design some features manually in addition to the features automatically obtained by the flow table. Then we use the preprocessed data to train the DNN model and make a prediction. The overall detection framework is deployed in the SDN controller. The experiment results illustrate DNN model has higher accuracy in identifying attack traffic than machine learning algorithms, which lays a foundation for the defense against DDoS attack.
Pavan Kumar, R Sai, Chand, K Gopi, Krishna, M Vamsi, Nithin, B Gowtham, Roshini, A, Swetha, K.
2022.
Enhanced DDOS Attack Detection Algorithm to Increase Network Lifetime in Cloud Environment. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1783–1787.
DDoS attacks, one of the oldest forms of cyberthreats, continue to be a favorite tool of mass interruption, presenting cybersecurity hazards to practically every type of company, large and small. As a matter of fact, according to IDC, DDoS attacks are predicted to expand at an 18 percent compound annual growth rate (CAGR) through 2023, indicating that it is past time to enhance investment in strong mitigation systems. And while some firms may assume they are limited targets for a DDoS assault, the amount of structured internet access to power corporation services and apps exposes everyone to downtime and poor performance if the infrastructure is not protected against such attacks. We propose using correlations between missing packets to increase detection accuracy. Furthermore, to ensure that these correlations are calculated correctly.
ISSN: 2575-7288
Hashim, Noor Hassanin, Sadkhan, Sattar B..
2022.
DDOS Attack Detection in Wireless Network Based On MDR. 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA). :1–5.
Intrusion detection systems (IDS) are most efficient way of defending against network-based attacks aimed at system devices, especially wireless devices. These systems are used in almost all large-scale IT infrastructures components, and they effected with different types of network attacks such as DDoS attack. Distributed Denial of-Services (DDoS) attacks the protocols and systems that are intended to provide services (to the public) are inherently vulnerable to attacks like DDoS, which were launched against a number of important Internet sites where security precautions were in place.
Li, Mengxue, Zhang, Binxin, Wang, Guangchang, ZhuGe, Bin, Jiang, Xian, Dong, Ligang.
2022.
A DDoS attack detection method based on deep learning two-level model CNN-LSTM in SDN network. 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE). :282–287.
This paper mainly explores the detection and defense of DDoS attacks in the SDN architecture of the 5G environment, and proposes a DDoS attack detection method based on the deep learning two-level model CNN-LSTM in the SDN network. Not only can it greatly improve the accuracy of attack detection, but it can also reduce the time for classifying and detecting network traffic, so that the transmission of DDoS attack traffic can be blocked in time to ensure the availability of network services.
Chen, Jing, Yang, Lei, Qiu, Ziqiao.
2022.
Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.