Visible to the public Biblio

Found 15086 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2023-07-12
Dwiko Satriyo, U. Y. S, Rahutomo, Faisal, Harjito, Bambang, Prasetyo, Heri.  2022.  DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
Xiang, Peng, Peng, ChengWei, Li, Qingshan.  2022.  Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
Tang, Muyi.  2022.  Research on Edge Network Security Technology Based on DHR. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :614—617.
This paper examines how the extent of the network has expanded from the traditional computer Internet to the field of edge computing based on mobile communication technology with the in-depth development of the mobile Internet and the Internet of Things. In particular, the introduction of 5G has enabled massive edge computing nodes to build a high-performance, energy-efficient and low-latency mobile edge computing architecture. Traditional network security technologies and methods are not fully applicable in this environment. The focus of this paper is on security protection for edge networks. Using virtualized networks builds a dynamic heterogeneous redundancy security model (i.e., DHR). It first designs and evaluates the DHR security model, then constructs the required virtualized heterogeneous entity set, and finally constructs a DHR-based active defense scheme. Compared with existing network security solutions, the security protection technology of the edge network studied this time has a better protective effect against the unknown security threats facing the edge network.
Salman, Fatema, Jedidi, Ahmed.  2022.  Trust-Aware Security system for Dynamic Southbound Communication in Software Defined Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :93—97.
The vast proliferation of the connected devices makes the operation of the traditional networks so complex and drops the network performance, particularly, failure cases. In fact, a novel solution is proposed to enable the management of the network resources and services named software defined network (SDN). SDN splits the data plane and the control plane by centralizing all the control plane on one common platform. Further, SDN makes the control plane programmable by offering high flexibility for the network management and monitoring mostly in failure cases. However, the main challenge in SDN is security that is presented as the first barrier for its development. Security in SDN is presented at various levels and forms, particularly, the communication between the data plane and control plane that presents a weak point in SDN framework. In this article, we suggest a new security framework focused on the combination between the trust and awareness concepts (TAS-SDN) for a dynamic southbound communication SDN. Further, TAS-SDN uses trust levels to establish a secure communication between the control plane and data plane. As a result, we discuss the implementation and the performance of TAS-SDN which presents a promote security solution in terms of time execution, complexity and scalability for SDN.
Xiao, Weidong, Zhang, Xu, Wang, Dongbin.  2022.  Cross-Security Domain Dynamic Orchestration Algorithm of Network Security Functions. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :413—419.
To prevent all sorts of attacks, the technology of security service function chains (SFC) is proposed in recent years, it becomes an attractive research highlights. Dynamic orchestration algorithm can create SFC according to the resource usage of network security functions. The current research on creating SFC focuses on a single domain. However in reality the large and complex networks are divided into security domains according to different security levels and managed separately. Therefore, we propose a cross-security domain dynamic orchestration algorithm to create SFC for network security functions based on ant colony algorithm(ACO) and consider load balancing, shortest path and minimum delay as optimization objectives. We establish a network security architecture based on the proposed algorithm, which is suitable for the industrial vertical scenarios, solves the deployment problem of the dynamic orchestration algorithm. Simulation results verify that our algorithm achieves the goal of creating SFC across security domains and demonstrate its performance in creating service function chains to resolve abnormal traffic flows.
2023-07-11
Zhong, Fuli.  2022.  Resilient Control for Time-Delay Systems in Cyber-Physical Environment Using State Estimation and Switching Moving Defense. 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :204—212.
Cybersecurity for complex systems operating in cyber-physical environment is becoming more and more critical because of the increasing cyber threats and systems' vulnerabilities. Security by design is quite an important method to ensure the systems' normal operations and services supply. For the aim of coping with cyber-attack affections properly, this paper studies the resilient security control issue for time-varying delay systems in cyber-physical environment with state estimation and moving defense approach. Time-varying delay factor induced by communication and network transmission, or data acquisition and processing, or certain cyber-attacks, is considered. To settle the cyber-attacks from the perspective of system control, a dynamic system model considering attacks is presented, and the corresponding switched control model with time-varying delay against attacks is formulated. Then the state estimator for system states is designed to overcome the problem that certain states cannot be measured directly. Estimated states serve as the input of the resilient security controller. Sufficient conditions of the stability of the observer and control system are derived out with the Lyapunov stability analysis method jointly. A moving defense strategy based on anomaly detection and random switching is presented, in which an optimization problem for calculating the proper switching probability of each candidate actuator-controller pair is given. Simulation experimental results are shown to illustrate the effectiveness of the presented scheme.
Wang, Rongzhen, Zhang, Bing, Wen, Shixi, Zhao, Yuan.  2022.  Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
Sennewald, Tom, Song, Xinya, Westermann, Dirk.  2022.  Assistance System to Consider Dynamic Phenomena for Secure System Operation. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
This contribution provides the implementation of a digital twin-based assistance system to be used in future control rooms. By applying parameter estimation methods, the dynamic model in the digital twin is an accurate representation of the physical system. Therefore, a dynamic security assessment (DSA) that is highly dependent on a correctly parameterized dynamic model, can give more reliable information to a system operator in the control room. The assistance system is studied on the Cigré TB 536 benchmark system with an obscured set of machine parameters. Through the proposed parameter estimation approach the original parameters could be estimated, changing, and increasing the statement of the DSA in regard to imminent instabilities.
Tudose, Andrei, Micu, Robert, Picioroaga, Irina, Sidea, Dorian, Mandis, Alexandru, Bulac, Constantin.  2022.  Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
Hammar, Kim, Stadler, Rolf.  2022.  An Online Framework for Adapting Security Policies in Dynamic IT Environments. 2022 18th International Conference on Network and Service Management (CNSM). :359—363.

We present an online framework for learning and updating security policies in dynamic IT environments. It includes three components: a digital twin of the target system, which continuously collects data and evaluates learned policies; a system identification process, which periodically estimates system models based on the collected data; and a policy learning process that is based on reinforcement learning. To evaluate our framework, we apply it to an intrusion prevention use case that involves a dynamic IT infrastructure. Our results demonstrate that the framework automatically adapts security policies to changes in the IT infrastructure and that it outperforms a state-of-the-art method.

Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
Qin, Xuhao, Ni, Ming, Yu, Xinsheng, Zhu, Danjiang.  2022.  Survey on Defense Technology of Web Application Based on Interpretive Dynamic Programming Languages. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :795—801.

With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.

Ma, Rui, Zhan, Meng.  2022.  Transient Stability Assessment and Dynamic Security Region in Power Electronics Dominated Power Systems. 2022 IEEE International Conference on Power Systems Technology (POWERCON). :1—6.
Transient stability accidents induced by converter-based resources have been emerging frequently around the world. In this paper, the transient stability of the grid-tied voltage source converter (VSC) system is studied through estimating the basin of attraction (BOA) based on the hyperplane or hypersurface method. Meanwhile, fault critical clearing times are estimated, based on the approximated BOA and numerical fault trajectory. Further, the dynamic security region (DSR), an important index in traditional power systems, is extended to power-electronics-dominated power systems in this paper. The DSR of VSC is defined in the space composed of active current references. Based on the estimated BOA, the single-VSC-infinite-bus system is taken as an example and its DSR is evaluated. Finally, all these analytical results are well verified by several numerical simulations in MATLAB/Simulink.
Sari, Indah Permata, Nahor, Kevin Marojahan Banjar, Hariyanto, Nanang.  2022.  Dynamic Security Level Assessment of Special Protection System (SPS) Using Fuzzy Techniques. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA). :377—382.
This study will be focused on efforts to increase the reliability of the Bangka Electricity System by designing the interconnection of the Bangka system with another system that is stronger and has a better energy mix, the Sumatra System. The novelty element in this research is the design of system protection using Special Protection System (SPS) as well as a different assessment method using the Fuzzy Technique This research will analyze the implementation of the SPS event-based and parameter-based as a new defense scheme by taking corrective actions to keep the system stable and reliable. These actions include tripping generators, loads, and reconfiguring the system automatically and quickly. The performance of this SPS will be tested on 10 contingency events with four different load profiles and the system response will be observed in terms of frequency stability, voltage, and rotor angle. From the research results, it can be concluded that the SPS performance on the Bangka-Sumatra Interconnection System has a better and more effective performance than the existing defense scheme, as evidenced by the results of dynamic security assessment (DSA) testing using Fuzzy Techniques.
2023-07-10
Obien, Joan Baez, Calinao, Victor, Bautista, Mary Grace, Dadios, Elmer, Jose, John Anthony, Concepcion, Ronnie.  2022.  AEaaS: Artificial Intelligence Edge-of-Things as a Service for Intelligent Remote Farm Security and Intrusion Detection Pre-alarm System. 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1—6.
With the continues growth of our technology, majority in our sectors are becoming smart and one of its great applications is in agriculture, which we call it as smart farming. The application of sensors, IoT, artificial intelligence, networking in the agricultural setting with the main purpose of increasing crop production and security level. With this advancement in farming, this provides a lot of privileges like remote monitoring, optimization of produce and too many to mention. In light of the thorough systematic analysis performed in this study, it was discovered that Edge-of-things is a potential computing scheme that could boost an artificial intelligence for intelligent remote farm security and intrusion detection pre-alarm system over other computing schemes. Again, the purpose of this study is not to replace existing cloud computing, but rather to highlight the potential of the Edge. The Edge architecture improves end-user experience by improving the time-related response of the system. response time of the system. One of the strengths of this system is to provide time-critical response service to make a decision with almost no delay, making it ideal for a farm security setting. Moreover, this study discussed the comparative analysis of Cloud, Fog and Edge in relation to farm security, the demand for a farm security system and the tools needed to materialize an Edge computing in a farm environment.
Gong, Taiyuan, Zhu, Li.  2022.  Edge Intelligence-based Obstacle Intrusion Detection in Railway Transportation. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :2981—2986.
Train operation is highly influenced by the rail track state and the surrounding environment. An abnormal obstacle on the rail track will pose a severe threat to the safe operation of urban rail transit. The existing general obstacle detection approaches do not consider the specific urban rail environment and requirements. In this paper, we propose an edge intelligence (EI)-based obstacle intrusion detection system to detect accurate obstacle intrusion in real-time. A two-stage lightweight deep learning model is designed to detect obstacle intrusion and obtain the distance from the train to the obstacle. Edge computing (EC) and 5G are used to conduct the detection model and improve the real-time detection performance. A multi-agent reinforcement learning-based offloading and service migration model is formulated to optimize the edge computing resource. Experimental results show that the two-stage intrusion detection model with the reinforcement learning (RL)-based edge resource optimization model can achieve higher detection accuracy and real-time performance compared to traditional methods.
Gao, Xuefei, Yao, Chaoyu, Hu, Liqi, Zeng, Wei, Yin, Shengyang, Xiao, Junqiu.  2022.  Research and Implementation of Artificial Intelligence Real-Time Recognition Method for Crack Edge Based on ZYNQ. 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI). :460—465.
At present, pavement crack detection mainly depends on manual survey and semi-automatic detection. In the process of damage detection, it will inevitably be subject to the subjective influence of inspectors and require a lot of identification time. Therefore, this paper proposes the research and implementation of artificial intelligence real-time recognition method of crack edge based on zynq, which combines edge calculation technology with deep learning, The improved ipd-yolo target detection network is deployed on the zynq zu2cg edge computing development platform. The mobilenetv3 feature extraction network is used to replace the cspdarknet53 feature extraction network in yolov4, and the deep separable convolution is used to replace the conventional convolution. Combined with the advantages of the deep neural network in the cloud and edge computing, the rock fracture detection oriented to the edge computing scene is realized. The experimental results show that the accuracy of the network on the PID data set The recall rate and F1 score have been improved to better meet the requirements of real-time identification of rock fractures.
Zhang, Xiao, Chen, Xiaoming, He, Yuxiong, Wang, Youhuai, Cai, Yong, Li, Bo.  2022.  Neural Network-Based DDoS Detection on Edge Computing Architecture. 2022 4th International Conference on Applied Machine Learning (ICAML). :1—4.
The safety of the power system is inherently vital, due to the high risk of the electronic power system. In the wave of digitization in recent years, many power systems have been digitized to a certain extent. Under this circumstance, network security is particularly important, in order to ensure the normal operation of the power system. However, with the development of the Internet, network security issues are becoming more and more serious. Among all kinds of network attacks, the Distributed Denial of Service (DDoS) is a major threat. Once, attackers used huge volumes of traffic in short time to bring down the victim server. Now some attackers just use low volumes of traffic but for a long time to create trouble for attack detection. There are many methods for DDoS detection, but no one can fully detect it because of the huge volumes of traffic. In order to better detect DDoS and make sure the safety of electronic power system, we propose a novel detection method based on neural network. The proposed model and its service are deployed to the edge cloud, which can improve the real-time performance for detection. The experiment results show that our model can detect attacks well and has good real-time performance.
Devi, Reshoo, Kumar, Amit, Kumar, Vivek, Saini, Ashish, Kumari, Amrita, Kumar, Vipin.  2022.  A Review Paper on IDS in Edge Computing or EoT. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP). :30—35.

The main intention of edge computing is to improve network performance by storing and computing data at the edge of the network near the end user. However, its rapid development largely ignores security threats in large-scale computing platforms and their capable applications. Therefore, Security and privacy are crucial need for edge computing and edge computing based environment. Security vulnerabilities in edge computing systems lead to security threats affecting edge computing networks. Therefore, there is a basic need for an intrusion detection system (IDS) designed for edge computing to mitigate security attacks. Due to recent attacks, traditional algorithms may not be possibility for edge computing. This article outlines the latest IDS designed for edge computing and focuses on the corresponding methods, functions and mechanisms. This review also provides deep understanding of emerging security attacks in edge computing. This article proves that although the design and implementation of edge computing IDS have been studied previously, the development of efficient, reliable and powerful IDS for edge computing systems is still a crucial task. At the end of the review, the IDS developed will be introduced as a future prospect.

Zhao, Zhihui, Zeng, Yicheng, Wang, Jinfa, Li, Hong, Zhu, Hongsong, Sun, Limin.  2022.  Detection and Incentive: A Tampering Detection Mechanism for Object Detection in Edge Computing. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :166—177.
The object detection tasks based on edge computing have received great attention. A common concern hasn't been addressed is that edge may be unreliable and uploads the incorrect data to cloud. Existing works focus on the consistency of the transmitted data by edge. However, in cases when the inputs and the outputs are inherently different, the authenticity of data processing has not been addressed. In this paper, we first simply model the tampering detection. Then, bases on the feature insertion and game theory, the tampering detection and economic incentives mechanism (TDEI) is proposed. In tampering detection, terminal negotiates a set of features with cloud and inserts them into the raw data, after the cloud determines whether the results from edge contain the relevant information. The honesty incentives employs game theory to instill the distrust among different edges, preventing them from colluding and thwarting the tampering detection. Meanwhile, the subjectivity of nodes is also considered. TDEI distributes the tampering detection to all edges and realizes the self-detection of edge results. Experimental results based on the KITTI dataset, show that the accuracy of detection is 95% and 80%, when terminal's additional overhead is smaller than 30% for image and 20% for video, respectively. The interference ratios of TDEI to raw data are about 16% for video and 0% for image, respectively. Finally, we discuss the advantage and scalability of TDEI.
Dong, Yeting, Wang, Zhiwen, Guo, Wuyuan.  2022.  Overview of edge detection algorithms based on mathematical morphology. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :1321—1326.
Edge detection is the key and difficult point of machine vision and image processing technology. The traditional edge detection algorithm is sensitive to noise and it is difficult to accurately extract the edge of the image, so the effect of image processing is not ideal. To solve this problem, people in the industry use the structural element features of morphological edge detection operator to extract the edge features of the image by carefully designing and combining the structural elements of different sizes and directions, so as to effectively ensure the integrity of edge information in all directions and eliminate large noise at the same time. This paper first introduces the traditional edge detection algorithms, then summarizes the edge detection algorithms based on mathematical morphology in recent years, finds that the selection of multi-scale and multi-directional structural elements is an important research direction, and finally discusses the development trend of mathematical morphology edge detection technology.