Visible to the public Biblio

Found 15086 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2017-08-02
Nguyen, Trong-Dat, Lee, Sang-Won.  2016.  I/O Characteristics of MongoDB and Trim-based Optimization in Flash SSDs. Proceedings of the Sixth International Conference on Emerging Databases: Technologies, Applications, and Theory. :139–144.

NoSQL solutions become emerging for large scaled, high performance, schema-flexible applications. WiredTiger is cost effective, non-locking, no-overwrite storage used as default storage engine in MongoDB. Understanding I/O characteristics of storage engine is important not only for choosing suitable solution with an application but also opening opportunities for researchers optimizing current working system, especially building more flash-awareness NoSQL DBMS. This paper explores background of MongoDB internals then analyze I/O characteristics of WiredTiger storage engine in detail. We also exploit space management mechanism in WiredTiger by using TRIM command.

Guerraoui, Rachid, Trigonakis, Vasileios.  2016.  Optimistic Concurrency with OPTIK. Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. :18:1–18:12.

We introduce OPTIK, a new practical design pattern for designing and implementing fast and scalable concurrent data structures. OPTIK relies on the commonly-used technique of version numbers for detecting conflicting concurrent operations. We show how to implement the OPTIK pattern using the novel concept of OPTIK locks. These locks enable the use of version numbers for implementing very efficient optimistic concurrent data structures. Existing state-of-the-art lock-based data structures acquire the lock and then check for conflicts. In contrast, with OPTIK locks, we merge the lock acquisition with the detection of conflicting concurrency in a single atomic step, similarly to lock-free algorithms. We illustrate the power of our OPTIK pattern and its implementation by introducing four new algorithms and by optimizing four state-of-the-art algorithms for linked lists, skip lists, hash tables, and queues. Our results show that concurrent data structures built using OPTIK are more scalable than the state of the art.

Dolz, Manuel F., del Rio Astorga, David, Fernández, Javier, García, J. Daniel, García-Carballeira, Félix, Danelutto, Marco, Torquati, Massimo.  2016.  Embedding Semantics of the Single-Producer/Single-Consumer Lock-Free Queue into a Race Detection Tool. Proceedings of the 7th International Workshop on Programming Models and Applications for Multicores and Manycores. :20–29.

The rapid progress of multi-/many-core architectures has caused data-intensive parallel applications not yet be fully suited for getting the maximum performance. The advent of parallel programming frameworks offering structured patterns has alleviated developers' burden adapting such applications to parallel platforms. For example, the use of synchronization mechanisms in multithreaded applications is essential on shared-cache multi-core architectures. However, ensuring an appropriate use of their interfaces can be challenging, since different memory models plus instruction reordering at compiler/processor levels may influence the occurrence of data races. The benefits of race detectors are formidable in this sense, nevertheless if lock-free data structures with no high-level atomics are used, they may emit false positives. In this paper, we extend the ThreadSanitizer race detection tool in order to support semantics of the general Single-Producer/Single-Consumer (SPSC) lock-free parallel queue and to detect benign data races where it was correctly used. To perform our analysis, we leverage the FastFlow SPSC bounded lock-free queue implementation to test our extensions over a set of μ-benchmarks and real applications on a dual-socket Intel Xeon CPU E5-2695 platform. We demonstrate that this approach can reduce, on average, 30% the number of data race warning messages.

Harbach, Marian, De Luca, Alexander, Egelman, Serge.  2016.  The Anatomy of Smartphone Unlocking: A Field Study of Android Lock Screens. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :4806–4817.

To prevent unauthorized parties from accessing data stored on their smartphones, users have the option of enabling a "lock screen" that requires a secret code (e.g., PIN, drawing a pattern, or biometric) to gain access to their devices. We present a detailed analysis of the smartphone locking mechanisms currently available to billions of smartphone users worldwide. Through a month-long field study, we logged events from a panel of users with instrumented smartphones (N=134). We are able to show how existing lock screen mechanisms provide users with distinct tradeoffs between usability (unlocking speed vs. unlocking frequency) and security. We find that PIN users take longer to enter their codes, but commit fewer errors than pattern users, who unlock more frequently and are very prone to errors. Overall, PIN and pattern users spent the same amount of time unlocking their devices on average. Additionally, unlock performance seemed unaffected for users enabling the stealth mode for patterns. Based on our results, we identify areas where device locking mechanisms can be improved to result in fewer human errors – increasing usability – while also maintaining security.

Cha, Seunghun, Park, Jaewoo, Cho, Geumhwan, Huh, Jun Ho, Kim, Hyoungshick.  2016.  POSTER: WiPING: Wi-Fi Signal-based PIN Guessing Attack. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1835–1837.

This paper presents a new type of online password guessing attack called "WiPING" (Wi-Fi signal-based PIN Guessing attack) to guess a victim's PIN (Personal Identification Number) within a small number of unlock attempts. WiPING uses wireless signal patterns identified from observing sequential finger movements involved in typing a PIN to unlock a mobile device. A list of possible PIN candidates is generated from the wireless signal patterns, and is used to improve performance of PIN guessing attacks. We implemented a proof-of-concept attack to demonstrate the feasibility of WiPING. Our results showed that WiPING could be practically effective: while pure guessing attacks failed to guess all 20 PINs, WiPING successfully guessed two PINs.

Shim, Yoon-Seok, Yoo, Seehwan.  2016.  Poster: Breaching Pattern Screen Lock Security. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion. :78–78.

Multi-core is widely used for mobile devices due to high performance and good energy efficiency. For maintaining cores' cache coherency, mobile multi-core integrated new hardware ARM CCI. In this study, we focus on the security aspect of mobile multi-core. We monitor cache coherency operations that occur among PSL related processes' inter-core communication. After simple analysis, we can sneak android PSL information. Some preliminary results show that we could efficiently identify PSL pattern. This is a significant security violation in terms of confidentiality. In addition, mobile multi-cores are already prevalent, the attack is practical, and it can be easily spread.

Liu, Yepang, Xu, Chang, Cheung, Shing-Chi, Terragni, Valerio.  2016.  Understanding and Detecting Wake Lock Misuses for Android Applications. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :396–409.

Wake locks are widely used in Android apps to protect critical computations from being disrupted by device sleeping. Inappropriate use of wake locks often seriously impacts user experience. However, little is known on how wake locks are used in real-world Android apps and the impact of their misuses. To bridge the gap, we conducted a large-scale empirical study on 44,736 commercial and 31 open-source Android apps. By automated program analysis and manual investigation, we observed (1) common program points where wake locks are acquired and released, (2) 13 types of critical computational tasks that are often protected by wake locks, and (3) eight patterns of wake lock misuses that commonly cause functional and non-functional issues, only three of which had been studied by existing work. Based on our findings, we designed a static analysis technique, Elite, to detect two most common patterns of wake lock misuses. Our experiments on real-world subjects showed that Elite is effective and can outperform two state-of-the-art techniques.

Di Castro, Dotan, Lewin-Eytan, Liane, Maarek, Yoelle, Wolff, Ran, Zohar, Eyal.  2016.  Enforcing K-anonymity in Web Mail Auditing. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :327–336.

We study the problem of k-anonymization of mail messages in the realistic scenario of auditing mail traffic in a major commercial Web mail service. Mail auditing is necessary in various Web mail debugging and quality assurance activities, such as anti-spam or the qualitative evaluation of novel mail features. It is conducted by trained professionals, often referred to as "auditors", who are shown messages that could expose personally identifiable information. We address here the challenge of k-anonymizing such messages, focusing on machine generated mail messages that represent more than 90% of today's mail traffic. We introduce a novel message signature Mail-Hash, specifically tailored to identifying structurally-similar messages, which allows us to put such messages in a same equivalence class. We then define a process that generates, for each class, masked mail samples that can be shown to auditors, while guaranteeing the k-anonymity of users. The productivity of auditors is measured by the amount of non-hidden mail content they can see every day, while considering normal working conditions, which set a limit to the number of mail samples they can review. In addition, we consider k-anonymity over time since, by definition of k-anonymity, every new release places additional constraints on the assignment of samples. We describe in details the results we obtained over actual Yahoo mail traffic, and thus demonstrate that our methods are feasible at Web mail scale. Given the constantly growing concern of users over their email being scanned by others, we argue that it is critical to devise such algorithms that guarantee k-anonymity, and implement associated processes in order to restore the trust of mail users.

Squires, Walter, Centonze, Paolina.  2016.  Cross-platform Access-rights Analysis of Mobile Applications. Proceedings of the International Conference on Mobile Software Engineering and Systems. :295–296.

We live in the era of mobile computing. Mobile devices have more sensors and more capabilities than desktop computers. For any computing device that contains sensitive information and accesses the Internet, security is a major concern for both enterprises and end-users. Of the mobile devices commonly in The emphasis of this research focuses on to the ways in which the popular iOS and Android platforms handle permissions in an attempt to discern if there are any identifiable trends on either platform w.r.t. applications being over- or underprivileged.

John, Adebayo Kolawole, Di Caro, Luigi, Boella, Guido.  2016.  A Supervised KeyPhrase Extraction System. Proceedings of the 12th International Conference on Semantic Systems. :57–62.

In this paper, we present a multi-featured supervised automatic keyword extraction system. We extracted salient semantic features which are descriptive of candidate keyphrases, a Random Forest classifier was used for training. The system achieved an accuracy of 58.3 % precision and has shown to outperform two top performing systems when benchmarked on a crowdsourced dataset. Furthermore, our approach achieved a personal best Precision and F-measure score of 32.7 and 25.5 respectively on the Semeval Keyphrase extraction challenge dataset. The paper describes the approaches used as well as the result obtained.

Qundus, Jamal Al.  2016.  Generating Trust in Collaborative Annotation Environments. Proceedings of the 12th International Symposium on Open Collaboration Companion. :3:1–3:4.

The main goal of this work is to create a model of trust which can be considered as a reference for developing applications oriented on collaborative annotation. Such a model includes design parameters inferred from online communities operated on collaborative content. This study aims to create a static model, but it could be dynamic or more than one model depending on the context of an application. An analysis on Genius as a peer production community was done to understand user behaviors. This study characterizes user interactions based on the differentiation between Lightweight Peer Production (LWPP) and Heavyweight Peer Production (HWPP). It was found that more LWPP- interactions take place in the lower levels of this system. As the level in the role system increases, there will be more HWPP-interactions. This can be explained as LWPP-interacions are straightforward, while HWPP-interations demand more agility by the user. These provide more opportunities and therefore attract other users for further interactions.

Seyler, Dominic, Yahya, Mohamed, Berberich, Klaus, Alonso, Omar.  2016.  Automated Question Generation for Quality Control in Human Computation Tasks. Proceedings of the 8th ACM Conference on Web Science. :360–362.

When running large human computation tasks in the real-world, honeypots play an important role for assessing the overall quality of the work produced. The generation of such honeypots can be a significant burden on the task owner as they require specific characteristics in their design and implementation and continuous maintenance when operating data pipelines that include a human computation component. In this extended abstract we outline a novel approach for creating honeypots using automatically generated questions from a reference knowledge base with the ability to control such parameters as topic and difficulty.

Wu, Zhaoming, Aggarwal, Charu C., Sun, Jimeng.  2016.  The Troll-Trust Model for Ranking in Signed Networks. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :447–456.

Signed social networks have become increasingly important in recent years because of the ability to model trust-based relationships in review sites like Slashdot, Epinions, and Wikipedia. As a result, many traditional network mining problems have been re-visited in the context of networks in which signs are associated with the links. Examples of such problems include community detection, link prediction, and low rank approximation. In this paper, we will examine the problem of ranking nodes in signed networks. In particular, we will design a ranking model, which has a clear physical interpretation in terms of the sign of the edges in the network. Specifically, we propose the Troll-Trust model that models the probability of trustworthiness of individual data sources as an interpretation for the underlying ranking values. We will show the advantages of this approach over a variety of baselines.

Jang, Min-Hee, Faloutsos, Christos, Kim, Sang-Wook, Kang, U, Ha, Jiwoon.  2016.  PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and Negative Information. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :629–638.

Given "who-trusts/distrusts-whom" information, how can we propagate the trust and distrust? With the appearance of fraudsters in social network sites, the importance of trust prediction has increased. Most such methods use only explicit and implicit trust information (e.g., if Smith likes several of Johnson's reviews, then Smith implicitly trusts Johnson), but they do not consider distrust. In this paper, we propose PIN-TRUST, a novel method to handle all three types of interaction information: explicit trust, implicit trust, and explicit distrust. The novelties of our method are the following: (a) it is carefully designed, to take into account positive, implicit, and negative information, (b) it is scalable (i.e., linear on the input size), (c) most importantly, it is effective and accurate. Our extensive experiments with a real dataset, Epinions.com data, of 100K nodes and 1M edges, confirm that PIN-TRUST is scalable and outperforms existing methods in terms of prediction accuracy, achieving up to 50.4 percentage relative improvement. 

Cao, Cong, Yan, Jun, Li, Mengxiang.  2016.  Understanding the Influence and Service Type of Trusted Third Party on Consumers' Online Trust: Evidence from Australian B2C Marketplace. Proceedings of the 18th Annual International Conference on Electronic Commerce: E-Commerce in Smart Connected World. :18:1–18:8.

In this study, the trusted third party (TTP) in Australia's B2C marketplace is studied and the factors influencing consumers' trust behaviour are examined from the perspective of consumers' online trust. Based on the literature review and combined with the development status and background of Australia's e-commerce, underpinned by the Theory of Planned Behaviour (TPB) and a conceptual trust model, this paper expatiates the specific factors and influence mechanism of TTP on consumers' trust behaviour. Also this paper explains two different functions of TTP to solve the online trust problem faced by consumers. Meanwhile, this paper summarizes five different types of services provided by TTPs during the establishment of the trust relationship. Finally, the present study selects 100 B2C enterprises by the simple random sampling method and makes a detailed analysis of their TTPs, to verify the services and functions of the proposed TTP in the trust model. This study is of some significance for comprehending the influence mechanism, functions and services of TTPs on consumers' trust behaviour in the realistic Australian B2C environment.

Yu, Kun, Berkovsky, Shlomo, Conway, Dan, Taib, Ronnie, Zhou, Jianlong, Chen, Fang.  2016.  Trust and Reliance Based on System Accuracy. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. :223–227.

Trust plays an important role in various user-facing systems and applications. It is particularly important in the context of decision support systems, where the system's output serves as one of the inputs for the users' decision making processes. In this work, we study the dynamics of explicit and implicit user trust in a simulated automated quality monitoring system, as a function of the system accuracy. We establish that users correctly perceive the accuracy of the system and adjust their trust accordingly.

Krawiecka, Klaudia, Paverd, Andrew, Asokan, N..  2016.  Protecting Password Databases Using Trusted Hardware. Proceedings of the 1st Workshop on System Software for Trusted Execution. :9:1–9:6.
Kaur, Jagjot, Lindskog, Dale.  2016.  An Algorithm to Facilitate Intrusion Response in Mobile Ad Hoc Networks. Proceedings of the 9th International Conference on Security of Information and Networks. :124–128.

In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.

Jangir, Sunil Kumar, Hemrajani, Naveen.  2016.  Evaluation of Black Hole, Wormhole and Sybil Attacks in Mobile Ad-hoc Networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :74:1–74:6.

A mobile ad hoc network (MANET) is an infrastructure-less network of various mobile devices and generally known for its self configuring behavior. MANET can communicate over relatively bandwidth constrained wireless links. Due to limited bandwidth battery power and dynamic network, topology routing in MANET is a challenging issue. Collaborative attacks are particularly serious issues in MANET. Attacks are liable to occur if routing algorithms fail to detect prone threats and to find as well as remove malicious nodes. Our objective is to examine and improve the performance of network diminished by variety of attacks. The performance of MANET network is examined under Black hole, Wormhole and Sybil attacks using Performance matrices and then major issues which are related to these attacks are addressed.

Patidar, Divya, Dubey, Jigyasu.  2016.  A Hybrid Approach for Dynamic Intrusion Detection, Enhancement of Performance and Security in MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :81:1–81:5.

Mobile ad hoc networking (MANET) has been most popular research area for last decade. In MANET node (mobile node) is communicate with each other over wireless link where all nodes behave like both as host and router. In comparison with wired networks, mobile network is more vulnerable to security threat because of no centralized administration. One of the momentous routing protocols used in MANET is AODV (Ad hoc On demand Distance Vector) protocol. The Ad hoc On demand Distance Vector (AODV) protocol is compromised with its security by a various types of attacks due to malicious nodes present in the network. A hybrid approach is given for intrusion detection by removing malicious nodes during the route discovery process. The proposed approach increases the network performance in terms of PDR, throughput and end to end delay and security also.

Chaudhary, Rashmi, Ragiri, Prakash Rao.  2016.  Implementation and Analysis of Blackhole Attack in AODV Routing Protocol. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :112:1–112:5.

MANET (Mobile ad-hoc network) is a wireless network. Several mobile nodes are present in MANET. It has various applications ranging from military to remote area communication. Several routing protocols are designed for routing of the packets in the network. AODV (ad hoc on demand vector) is one such protocol. Since, nodes are mobile in the network, security is a main concern. Blackhole attack is a network layer attack that tries to hamper the routing process. In this attack the data packets are dropped. The paper focuses on the analysis of AODV routing protocol under blackhole attack. First we have implemented blackhole attack in AODV and then analyzed the impact of blackhole attack on AODV under metrics like throughput, end to end delay and packet delivery fraction.

Mudgal, Richa, Gupta, Rohit.  2016.  An Efficient Approach for Wormhole Detection in MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :29:1–29:6.

A MANET is a collection of self-configured node connected with wireless links. Each node of a mobile ad hoc network acts as a router and finds out a suitable route to forward a packet from source to destination. This network is applicable in areas where establishment of infrastructure is not possible, such as in the military environment. Along with the military environment MANET is also used in civilian environment such as sports stadiums, meeting room. The routing functionality of each node is cause of many security threats on routing. In this paper addressed the problem of identifying and isolating wormhole attack that refuse to forward packets in wireless mobile ad hoc network. The impact of this attack has been shown to be detrimental to network performance, lowering the packet delivery ratio and dramatically increasing the end-to-end delay. Proposed work suggested the efficient and secure routing in MANET. Using this approach of buffer length and RTT calculation, routing overhead minimizes. This research is based on detection and prevention of wormhole attacks in AODV. The proposed protocol is simulated using NS-2 and its performance is compared with the standard AODV protocol. The statistical analysis shows that modified AODV protocol detects wormhole attack efficiently and provides secure and optimum path for routing.

Toradmalle, Dhanshree, Cherarajan, Kumudhan, Shedage, Mayur, Dogra, Nitesh, Gawde, Sanket.  2016.  A Secure Protocol for Trust Management in OLSR. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :51:1–51:4.

A group of wireless nodes forming a dynamic wireless network without any infrastructure is a MANET. As network is becoming an important technology for commercial and military based distributed applications, implementation of security over MANET has proved to be mandatory, as such networks are more vulnerable to attacks. When dealing with data transfer between the nodes in MANET, confidentiality and message integrity are the two important factors that need to be focused carefully. This paper proposes the implementation of a security algorithm over data transfer in Optimized Link State Routing protocol providing Trust Management in MANET by implementing confidentiality through Digital Signatures and Message Integrity through 256-bit strong AES cryptographic techniques using Openssl.

Amir, Mohammad, Nagar, Dhanroop Mal, Baghela, Vinay.  2016.  Secure DSR Routing Protocol Based on Homomorphic Digital Signature. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :84:1–84:5.

Mobile Ad-Hoc Network is a wireless networking exemplar of mobile hosts which are connected by wireless links without usual routing infrastructure and link fixed routers. Dynamic Source Routing (DSR) is one of the extensively used routing protocol for packet transfer from source to destination. It relies on maintaining most recent information, for which, each adhoc node maintains hop count and sequence number field. They are vulnerable to security attacks due to their mutable nature. Analogously, routing updates are transmitted in clear text, which again poses a security hazard. In this paper, we will propose an improved version of DSR routing protocol using Homomorphic Encryption Scheme which prevents pollution attack and accomplishes in maintaining Integrity Security Standard by following minimum hop count path. HDSR routing scheme is evaluated by simulation and results show that improved throughput and ETE delay can be obtained.

Shastri, Ashka, Joshi, Jignesh.  2016.  A Wormhole Attack in Mobile Ad-hoc Network: Detection and Prevention. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :31:1–31:4.

In Mobile Ad hoc Network (MANET) is a self-organizing session of communication between wireless mobile nodes build up dynamically regardless of any established infrastructure or central authority. In MANET each node behaves as a sender, receiver and router which are connected directly with one another if they are within the range of communication or else will depend on intermediate node if nodes are not in the vicinity of each other (hop-to-hop). MANET, by nature are very open, dynamic and distributed which make it more vulnerable to various attacks such as sinkhole, jamming, selective forwarding, wormhole, Sybil attack etc. thus acute security problems are faced more related to rigid network. A Wormhole attack is peculiar breed of attack, which cause a consequential breakdown in communication by impersonating legitimate nodes by malicious nodes across a wireless network. This attack can even collapse entire routing system of MANET by specifically targeting route establishment process. Confidentiality and Authenticity are arbitrated as any cryptographic primitives are not required to launch the attack. Emphasizing on wormhole attack attributes and their defending mechanisms for detection and prevention are discussed in this paper.