Biblio
In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their improvement.
Intrusion Detection Systems (IDS) have become a necessity in computer security systems because of the increase in unauthorized accesses and attacks. Intrusion Detection is a major component in computer security systems that can be classified as Host-based Intrusion Detection System (HIDS), which protects a certain host or system and Network-based Intrusion detection system (NIDS), which protects a network of hosts and systems. This paper addresses Probes attacks or reconnaissance attacks, which try to collect any possible relevant information in the network. Network probe attacks have two types: Host Sweep and Port Scan attacks. Host Sweep attacks determine the hosts that exist in the network, while port scan attacks determine the available services that exist in the network. This paper uses an intelligent system to maximize the recognition rate of network attacks by embedding the temporal behavior of the attacks into a TDNN neural network structure. The proposed system consists of five modules: packet capture engine, preprocessor, pattern recognition, classification, and monitoring and alert module. We have tested the system in a real environment where it has shown good capability in detecting attacks. In addition, the system has been tested using DARPA 1998 dataset with 100% recognition rate. In fact, our system can recognize attacks in a constant time.
Black-box web application vulnerability scanners are automated tools that probe web applications for security vulnerabilities. In order to assess the current state of the art, we obtained access to eight leading tools and carried out a study of: (i) the class of vulnerabilities tested by these scanners, (ii) their effectiveness against target vulnerabilities, and (iii) the relevance of the target vulnerabilities to vulnerabilities found in the wild. To conduct our study we used a custom web application vulnerable to known and projected vulnerabilities, and previous versions of widely used web applications containing known vulnerabilities. Our results show the promise and effectiveness of automated tools, as a group, and also some limitations. In particular, "stored" forms of Cross Site Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are not currently found by many tools. Because our goal is to assess the potential of future research, not to evaluate specific vendors, we do not report comparative data or make any recommendations about purchase of specific tools.
- « first
- ‹ previous
- 1
- 2
- 3