Biblio
The cuttlefish optimization algorithm is a new combinatorial optimization algorithm in the family of metaheuristics, applied in the continuous domain, and which provides mechanisms for local and global research. This paper presents a new adaptation of this algorithm in the discrete case, solving the famous travelling salesman problem, which is one of the discrete combinatorial optimization problems. This new adaptation proposes a reformulation of the equations to generate solutions depending a different algorithm cases. The experimental results of the proposed algorithm on instances of TSPLib library are compared with the other methods, show the efficiency and quality of this adaptation.
The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.
The amount of personal information contributed by individuals to digital repositories such as social network sites has grown substantially. The existence of this data offers unprecedented opportunities for data analytics research in various domains of societal importance including medicine and public policy. The results of these analyses can be considered a public good which benefits data contributors as well as individuals who are not making their data available. At the same time, the release of personal information carries perceived and actual privacy risks to the contributors. Our research addresses this problem area. In our work, we study a game-theoretic model in which individuals take control over participation in data analytics projects in two ways: 1) individuals can contribute data at a self-chosen level of precision, and 2) individuals can decide whether they want to contribute at all (or not). From the analyst's perspective, we investigate to which degree the research analyst has flexibility to set requirements for data precision, so that individuals are still willing to contribute to the project, and the quality of the estimation improves. We study this tradeoffs scenario for populations of homogeneous and heterogeneous individuals, and determine Nash equilibrium that reflect the optimal level of participation and precision of contributions. We further prove that the analyst can substantially increase the accuracy of the analysis by imposing a lower bound on the precision of the data that users can reveal.
Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
Many common cyberdefenses (like firewalls and intrusion-detection systems) are static, giving attackers the freedom to probe them at will. Moving-target defense (MTD) adds dynamism, putting the systems to be defended in motion, potentially at great cost to the defender. An alternative approach is a mobile resilient defense that removes attackers' ability to rely on prior experience without requiring motion in the protected infrastructure. The defensive technology absorbs most of the cost of motion, is resilient to attack, and is unpredictable to attackers. The authors' mobile resilient defense, Ant-Based Cyber Defense (ABCD), is a set of roaming, bio-inspired, digital-ant agents working with stationary agents in a hierarchy headed by a human supervisor. ABCD provides a resilient, extensible, and flexible defense that can scale to large, multi-enterprise infrastructures such as the smart electric grid.
With the urban traffic planning and management development, it is a highly considerable issue to analyze and estimate the original-destination data in the city. Traditional method to acquire the OD information usually uses household survey, which is inefficient and expensive. In this paper, the new methodology proposed that using mobile phone data to analyze the mechanism of trip generation, trip attraction and the OD information. The mobile phone data acquisition is introduced. A pilot study is implemented on Beijing by using the new method. And, much important traffic information can be extracted from the mobile phone data. We use the K-means clustering algorithm to divide the traffic zone. The attribution of traffic zone is identified using the mobile phone data. Then the OD distribution and the commuting travel are analyzed. At last, an experiment is done to verify availability of the mobile phone data, that analyzing the "Traffic tide phenomenon" in Beijing. The results of the experiments in this paper show a great correspondence to the actual situation. The validated results reveal the mobile phone data has tremendous potential on OD analysis.
In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive.
Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user. For the purpose of this study we have asked workers from Amazon’s Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week’s worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.
- « first
- ‹ previous
- 1
- 2
- 3