Visible to the public Biblio

Filters: Keyword is coding scheme  [Clear All Filters]
2020-07-16
Kadampot, Ishaque Ashar, Tahmasbi, Mehrdad, Bloch, Matthieu R.  2019.  Codes for Covert Communication over Additive White Gaussian Noise Channels. 2019 IEEE International Symposium on Information Theory (ISIT). :977—981.

We propose a coding scheme for covert communication over additive white Gaussian noise channels, which extends a previous construction for discrete memoryless channels. We first show how sparse signaling with On-Off keying fails to achieve the covert capacity but that a modification allowing the use of binary phase-shift keying for "on" symbols recovers the loss. We then construct a modified pulse-position modulation scheme that, combined with multilevel coding, can achieve the covert capacity with low-complexity error-control codes. The main contribution of this work is to reconcile the tension between diffuse and sparse signaling suggested by earlier information-theoretic results.

2020-04-06
Martínez-Peñas, Umberto, Kschischang, Frank R..  2018.  Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :702–709.
Multishot network coding is considered in a worst-case adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to ρ packets, and wire-tap up to μ links, all throughout ℓ shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ℓn'-2t-ρ-μ packets, where n' is the number of outgoing links at the source, for any packet length m ≥ n' (largest possible range), with only the restriction that ℓ\textbackslashtextless;q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. A Welch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ℓn', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
2019-01-21
Xie, P., Feng, J., Cao, Z., Wang, J..  2018.  GeneWave: Fast Authentication and Key Agreement on Commodity Mobile Devices. IEEE/ACM Transactions on Networking. 26:1688–1700.

Device-to-device communication is widely used for mobile devices and Internet of Things. Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then, we derive the initial acoustic channel response for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easyto-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10× faster than the state-of-the-art approach.

2017-02-14
K. Sakai, M. T. Sun, W. S. Ku, J. Wu, T. H. Lai.  2015.  "Multi-path Based Avoidance Routing in Wireless Networks". 2015 IEEE 35th International Conference on Distributed Computing Systems. :706-715.

The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.