Biblio
Secrete message protection has become a focal point of the network security domain due to the problems of violating the network use policies and unauthorized access of the public network. These problems have led to data protection techniques such as cryptography, and steganography. Cryptography consists of encrypting secrete message to a ciphertext format and steganography consists of concealing the secrete message in codes that make up a digital file, such as an image, audio, and video. Steganography, which is different from cryptography, ensures hiding a secret message for secure transmission over the public network. This paper presents a steganographic approach using digital images for data hiding that aims to providing higher performance by combining fuzzy logic type I to pre-process the cover image and difference expansion techniques. The previous methods have used the original cover image to embed the secrete message. This paper provides a new method that first identifies the edges of a cover image and then proceeds with a difference expansion to embed the secrete message. The experimental results of this work identified an improvement of 10% of the existing method based on increased payload capacity and the visibility of the stego image.
Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.
Cancelable biometric is a new era of technology that deals with the protection of the privacy content of a person which itself helps in protecting the identity of a person. Here the biometric information instead of being stored directly on the authentication database is transformed into a non-invertible coded format that will be utilized for providing access. The conversion into an encrypted code requires the provision of an encryption key from the user side. Both invertible and non-invertible coding techniques are there but non-invertible one provides additional security to the user. In this paper, a non-invertible cancelable biometric method has been proposed where the biometric image information is canceled and encoded into a code using a user-provided encryption key. This code is generated from the image histogram after continuous bin updation to the maximal value and then it is encrypted by the Hill cipher. This code is stored on the database instead of biometric information. The technique is applied to a set of retinal information taken from the Indian Diabetic Retinopathy database.
This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.
While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.
The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.