Man, Jiaxi, Li, Wei, Wang, Hong, Ma, Weidong.
2021.
On the Technology of Frequency Hopping Communication Network-Station Selection. 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). :35–41.
In electronic warfare, communication may not counter reconnaissance and jamming without the help of network-station selection of frequency hopping. The competition in the field of electromagnetic spectrum is becoming more and more fierce with the increasingly complex electromagnetic environment of modern battlefield. The research on detection, identification, parameter estimation and network station selection of frequency hopping communication network has aroused the interest of scholars both at home and abroad, which has been summarized in this paper. Firstly, the working mode and characteristics of two kinds of FH communication networking modes synchronous orthogonal network and asynchronous non orthogonal network are introduced. Then, through the analysis of FH signals time hopping, frequency hopping, bandwidth, frequency, direction of arrival, bad time-frequency analysis, clustering analysis and machine learning method, the feature-based method is adopted Parameter selection technology is used to sort FH network stations. Finally, the key and difficult points of current research on FH communication network separation technology and the research status of blind source separation technology are introduced in details in this paper.
Wu, Cong, Shi, Rong, Deng, Ke.
2021.
Reconnaissance and Experiment on 5G-SA Communication Terminal Capability and Identity Information. 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC). :16–22.
With the rapid development of mobile communication technology, the reconnaissance on terminal capability and identity information is not only an important guarantee to maintain the normal order of mobile communication, but also an essential means to ensure the electromagnetic space security. According to the characteristics of 5G mobile communication terminal's transporting capability and identity information, the smart jamming is first used to make the target terminal away from the 5G network, and then the jamming is turned off at once. Next the terminal will return to the 5G network. Through the time-frequency matching detection method, interactive signals of random access process and network registration between the terminal and the base station are quickly captured in this process, and the scheduling information in Physical Downlink Control Channel (PDCCH) and the capability and identity information in Physical Uplink Shared Channel (PUSCH) are demodulated and decoded under non-cooperative conditions. Finally, the experiment is carried out on the actual 5G communication terminal of China Telecom. The capability and identity information of this terminal are extracted successfully in the Stand Alone (SA) mode, which verifies the effectiveness and correctness of the method. This is a significant technical foundation for the subsequent development on the 5G terminal control equipment.