Biblio
This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.
The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.
This paper presents a model calibration algorithm for the modulated wideband converter (MWC) with non-ideal analog lowpass filter (LPF). The presented technique uses a test signal to estimate the finite impulse response (FIR) of the practical non-ideal LPF, and then a digital compensation filter is designed to calibrate the approximated FIR filter in the digital domain. At the cost of a moderate oversampling rate, the calibrated filter performs as an ideal LPF. The calibrated model uses the MWC system with non-ideal LPF to capture the samples of underlying signal, and then the samples are filtered by the digital compensation filter. Experimental results indicate that, without making any changes to the architecture of MWC, the proposed algorithm can obtain the samples as that of standard MWC with ideal LPF, and the signal can be reconstructed with overwhelming probability.