Biblio
This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.
In this work, the algorithm of increasing the information security of a communication system with Orthogonal Frequency Division Multiplexing (OFDM) was achieved by using a discrete-nonlinear Duffing system with dynamic chaos. The main idea of increasing information security is based on scrambling input information on three levels. The first one is mixing up data order, the second is scrambling data values and the final is mixing symbols at the Quadrature Amplitude Modulation (QAM) plot constellation. Each level's activities were made with the use of pseudorandom numbers set, generated by the discrete-nonlinear Duffing system with dynamic chaos.
Wireless technology has seen a tremendous growth in the recent past. Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme has been utilized in almost all the advanced wireless techniques because of the advantages it offers. Hence in this aspect, SystemVue based OFDM transceiver has been developed with AWGN as the channel noise. To mitigate the channel noise Convolutional code with Viterbi decoder has been depicted. Further to protect the information from the malicious users the data is scrambled with the aid of gold codes. The performance of the transceiver is analysed through various Bit Error Rate (BER) versus Signal to Noise Ratio (SNR) graphs.
A technical method regarding to the improvement of transmission capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a visible light emitting diode (LED) is proposed in this paper. An original OFDM signal, which is encoded by various multilevel digital modulations such as quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), is converted into a sparse one and then compressed using an adaptive sampling with inverse discrete cosine transform, while its error-free reconstruction is implemented using a L1-minimization based on a Bayesian compressive sensing (CS). In case of QPSK symbols, the transmission capacity of the optical wireless OFDM link was increased from 31.12 Mb/s to 51.87 Mb/s at the compression ratio of 40 %, while It was improved from 62.5 Mb/s to 78.13 Mb/s at the compression ratio of 20 % under the 16-QAM symbols in the error free wireless transmission (forward error correction limit: bit error rate of 10-3).