Biblio
Underwater networks have the potential to enable unexplored applications and to enhance our ability to observe and predict the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if maintained that security is indeed an important requirement in many emerging civilian and military applications. In this work, we look at one of the most prevalent attacks among UASNs which is Sybill attack and discuss mitigation approaches for it. Then, feasibly implemented the attack in UnetStack3 to simulate real-life scenario.
Drinking water availability is a crucial problem that must be addressed in order to improve the quality of life of individuals living developing nations. Improving water supply availability is important for public health, as it is the third highest risk factor for poor health in developing nations with high mortality rates. This project researched drinking water filtration for areas of Sub-Saharan Africa near existing bodies of water, where the populations are completely reliant on collecting from surface water sources: the most contaminated water source type. Water filtration methods that can be completely created by the consumer would alleviate aid organization dependence in developing nations, put the consumers in control, and improve public health. Filtration processes pass water through a medium that will catch contaminants through physical entrapment or absorption and thus yield a cleaner effluent. When exploring different materials for filtration, removal of contaminants and hydraulic conductivity are the two most important components. Not only does the method have to treat the water, but also it has to do so in a timeframe that is quick enough to produce potable water at a rate that keeps up with everyday needs. Cement is easily accessible in Sub- Saharan regions. Most concrete mixtures are not meant to be pervious, as it is a construction material used for its compressive strength, however, reduced water content in a cement mixture gives it higher permeability. Several different concrete samples of varying thicknesses and water concentrations were created. Bacterial count tests were performed on both pre-filtered and filtered water samples. Concrete filtration does remove bacteria from drinking water, however, the method can still be improved upon.