Visible to the public Biblio

Filters: Keyword is data mining model  [Clear All Filters]
2020-06-26
Jaiswal, Prajwal Kumar, Das, Sayari, Panigrahi, Bijaya Ketan.  2019.  PMU Based Data Driven Approach For Online Dynamic Security Assessment in Power Systems. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1—7.

This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.

2017-12-20
Li, S., Wang, B..  2017.  A Method for Hybrid Bayesian Network Structure Learning from Massive Data Using MapReduce. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :272–276.
Bayesian Network is the popular and important data mining model for representing uncertain knowledge. For large scale data it is often too costly to learn the accurate structure. To resolve this problem, much work has been done on migrating the structure learning algorithms to the MapReduce framework. In this paper, we introduce a distributed hybrid structure learning algorithm by combining the advantages of constraint-based and score-and-search-based algorithms. By reusing the intermediate results of MapReduce, the algorithm greatly simplified the computing work and got good results in both efficiency and accuracy.