Visible to the public Biblio

Filters: Keyword is Ensemble Learning  [Clear All Filters]
2023-07-21
Lee, Gwo-Chuan, Li, Zi-Yang, Li, Tsai-Wei.  2022.  Ensemble Algorithm of Convolution Neural Networks for Enhancing Facial Expression Recognition. 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ). :111—115.
Artificial intelligence (AI) cooperates with multiple industries to improve the overall industry framework. Especially, human emotion recognition plays an indispensable role in supporting medical care, psychological counseling, crime prevention and detection, and crime investigation. The research on emotion recognition includes emotion-specific intonation patterns, literal expressions of emotions, and facial expressions. Recently, the deep learning model of facial emotion recognition aims to capture tiny changes in facial muscles to provide greater recognition accuracy. Hybrid models in facial expression recognition have been constantly proposed to improve the performance of deep learning models in these years. In this study, we proposed an ensemble learning algorithm for the accuracy of the facial emotion recognition model with three deep learning models: VGG16, InceptionResNetV2, and EfficientNetB0. To enhance the performance of these benchmark models, we applied transfer learning, fine-tuning, and data augmentation to implement the training and validation of the Facial Expression Recognition 2013 (FER-2013) Dataset. The developed algorithm finds the best-predicted value by prioritizing the InceptionResNetV2. The experimental results show that the proposed ensemble learning algorithm of priorities edges up 2.81% accuracy of the model identification. The future extension of this study ventures into the Internet of Things (IoT), medical care, and crime detection and prevention.
2022-05-10
Ahakonye, Love Allen Chijioke, Amaizu, Gabriel Chukwunonso, Nwakanma, Cosmas Ifeanyi, Lee, Jae Min, Kim, Dong-Seong.  2021.  Enhanced Vulnerability Detection in SCADA Systems using Hyper-Parameter-Tuned Ensemble Learning. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :458–461.
The growth of inter-dependency intricacies of Supervisory Control and Data Acquisition (SCADA) systems in industrial operations generates a likelihood of increased vulnerability to malicious threats and machine learning approaches have been extensively utilized in the research for vulnerability detection. Nonetheless, to improve security, an enhanced vulnerability detection using hyper-parameter-tune machine learning is proposed for early detection, classification and mitigation of SCADA communication and transmission networks by classifying benign, or malicious DNS attacks. The proposed scheme, an ensemble optimizer (GentleBoost) upon hyper-parameter tuning, gave a comparative achievement. From the simulation results, the proposed scheme had an outstanding performance within the shortest possible time with an accuracy of 99.49%, 99.23% for precision, and a recall rate of 99.75%. Also, the model was compared to other contemporary algorithms and outperformed all the other algorithms proving to be an approach to keep abreast of the SCADA network vulnerabilities and attacks.
2021-10-12
Radhakrishnan, C., Karthick, K., Asokan, R..  2020.  Ensemble Learning Based Network Anomaly Detection Using Clustered Generalization of the Features. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :157–162.
Due to the extraordinary volume of business information, classy cyber-attacks pointing the networks of all enterprise have become more casual, with intruders trying to pierce vast into and grasp broader from the compromised network machines. The vital security essential is that field experts and the network administrators have a common terminology to share the attempt of intruders to invoke the system and to rapidly assist each other retort to all kind of threats. Given the enormous huge system traffic, traditional Machine Learning (ML) algorithms will provide ineffective predictions of the network anomaly. Thereby, a hybridized multi-model system can improve the accuracy of detecting the intrusion in the networks. In this manner, this article presents a novel approach Clustered Generalization oriented Ensemble Learning Model (CGELM) for predicting the network anomaly. The performance metrics of the anticipated approach are Detection Rate (DR) and False Predictive Rate (FPR) for the two heterogeneous data sets namely NSL-KDD and UGR'16. The proposed method provides 98.93% accuracy for DR and 0.14% of FPR against Decision Stump AdaBoost and Stacking Ensemble methods.
2021-09-21
Zhao, Quanling, Sun, Jiawei, Ren, Hongjia, Sun, Guodong.  2020.  Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
2021-05-05
Hallaji, Ehsan, Razavi-Far, Roozbeh, Saif, Mehrdad.  2020.  Detection of Malicious SCADA Communications via Multi-Subspace Feature Selection. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Security maintenance of Supervisory Control and Data Acquisition (SCADA) systems has been a point of interest during recent years. Numerous research works have been dedicated to the design of intrusion detection systems for securing SCADA communications. Nevertheless, these data-driven techniques are usually dependant on the quality of the monitored data. In this work, we propose a novel feature selection approach, called MSFS, to tackle undesirable quality of data caused by feature redundancy. In contrast to most feature selection techniques, the proposed method models each class in a different subspace, where it is optimally discriminated. This has been accomplished by resorting to ensemble learning, which enables the usage of multiple feature sets in the same feature space. The proposed method is then utilized to perform intrusion detection in smaller subspaces, which brings about efficiency and accuracy. Moreover, a comparative study is performed on a number of advanced feature selection algorithms. Furthermore, a dataset obtained from the SCADA system of a gas pipeline is employed to enable a realistic simulation. The results indicate the proposed approach extensively improves the detection performance in terms of classification accuracy and standard deviation.
2021-03-29
Jia, C., Li, C. L., Ying, Z..  2020.  Facial expression recognition based on the ensemble learning of CNNs. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—5.

As a part of body language, facial expression is a psychological state that reflects the current emotional state of the person. Recognition of facial expressions can help to understand others and enhance communication with others. We propose a facial expression recognition method based on convolutional neural network ensemble learning in this paper. Our model is composed of three sub-networks, and uses the SVM classifier to Integrate the output of the three networks to get the final result. The recognition accuracy of the model's expression on the FER2013 dataset reached 71.27%. The results show that the method has high test accuracy and short prediction time, and can realize real-time, high-performance facial recognition.

2020-08-28
Huang, Angus F.M., Chi-Wei, Yang, Tai, Hsiao-Chi, Chuan, Yang, Huang, Jay J.C., Liao, Yu-Han.  2019.  Suspicious Network Event Recognition Using Modified Stacking Ensemble Machine Learning. 2019 IEEE International Conference on Big Data (Big Data). :5873—5880.
This study aims to detect genuine suspicious events and false alarms within a dataset of network traffic alerts. The rapid development of cloud computing and artificial intelligence-oriented automatic services have enabled a large amount of data and information to be transmitted among network nodes. However, the amount of cyber-threats, cyberattacks, and network intrusions have increased in various domains of network environments. Based on the fields of data science and machine learning, this paper proposes a series of solutions involving data preprocessing, exploratory data analysis, new features creation, features selection, ensemble learning, models construction, and verification to identify suspicious network events. This paper proposes a modified form of stacking ensemble machine learning which includes AdaBoost, Neural Networks, Random Forest, LightGBM, and Extremely Randomised Trees (Extra Trees) to realise a high-performance classification. A suspicious network event recognition dataset for a security operations centre, which uses real network log observations from the 2019 IEEE BigData Cup Challenge, is used as an experimental dataset. This paper investigates the possibility of integrating big-data analytics, machine learning, and data science to improve intelligent cybersecurity.
2020-02-10
Mowla, Nishat I, Doh, Inshil, Chae, Kijoon.  2019.  Binarized Multi-Factor Cognitive Detection of Bio-Modality Spoofing in Fog Based Medical Cyber-Physical System. 2019 International Conference on Information Networking (ICOIN). :43–48.
Bio-modalities are ideal for user authentication in Medical Cyber-Physical Systems. Various forms of bio-modalities, such as the face, iris, fingerprint, are commonly used for secure user authentication. Concurrently, various spoofing approaches have also been developed over time which can fail traditional bio-modality detection systems. Image synthesis with play-doh, gelatin, ecoflex etc. are some of the ways used in spoofing bio-identifiable property. Since the bio-modality detection sensors are small and resource constrained, heavy-weight detection mechanisms are not suitable for these sensors. Recently, Fog based architectures are proposed to support sensor management in the Medical Cyber-Physical Systems (MCPS). A thin software client running in these resource-constrained sensors can enable communication with fog nodes for better management and analysis. Therefore, we propose a fog-based security application to detect bio-modality spoofing in a Fog based MCPS. In this regard, we propose a machine learning based security algorithm run as an application at the fog node using a binarized multi-factor boosted ensemble learner algorithm coupled with feature selection. Our proposal is verified on real datasets provided by the Replay Attack, Warsaw and LiveDet 2015 Crossmatch benchmark for face, iris and fingerprint modality spoofing detection used for authentication in an MCPS. The experimental analysis shows that our approach achieves significant performance gain over the state-of-the-art approaches.
2020-01-13
Verma, Abhishek, Ranga, Virender.  2019.  ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
Internet of Things is realized by a large number of heterogeneous smart devices which sense, collect and share data with each other over the internet in order to control the physical world. Due to open nature, global connectivity and resource constrained nature of smart devices and wireless networks the Internet of Things is susceptible to various routing attacks. In this paper, we purpose an architecture of Ensemble Learning based Network Intrusion Detection System named ELNIDS for detecting routing attacks against IPv6 Routing Protocol for Low-Power and Lossy Networks. We implement four different ensemble based machine learning classifiers including Boosted Trees, Bagged Trees, Subspace Discriminant and RUSBoosted Trees. To evaluate proposed intrusion detection model we have used RPL-NIDDS17 dataset which contains packet traces of Sinkhole, Blackhole, Sybil, Clone ID, Selective Forwarding, Hello Flooding and Local Repair attacks. Simulation results show the effectiveness of the proposed architecture. We observe that ensemble of Boosted Trees achieve the highest Accuracy of 94.5% while Subspace Discriminant method achieves the lowest Accuracy of 77.8 % among classifier validation methods. Similarly, an ensemble of RUSBoosted Trees achieves the highest Area under ROC value of 0.98 while lowest Area under ROC value of 0.87 is achieved by an ensemble of Subspace Discriminant among all classifier validation methods. All the implemented classifiers show acceptable performance results.
2019-06-10
Farooq, H. M., Otaibi, N. M..  2018.  Optimal Machine Learning Algorithms for Cyber Threat Detection. 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). :32-37.

With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.

2018-02-02
Jayasinghe, U., Otebolaku, A., Um, T. W., Lee, G. M..  2017.  Data centric trust evaluation and prediction framework for IOT. 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K). :1–7.

Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas.

2017-12-28
Mehetrey, P., Shahriari, B., Moh, M..  2016.  Collaborative Ensemble-Learning Based Intrusion Detection Systems for Clouds. 2016 International Conference on Collaboration Technologies and Systems (CTS). :404–411.

Cloud computation has become prominent with seemingly unlimited amount of storage and computation available to users. Yet, security is a major issue that hampers the growth of cloud. In this research we investigate a collaborative Intrusion Detection System (IDS) based on the ensemble learning method. It uses weak classifiers, and allows the use of untapped resources of cloud to detect various types of attacks on the cloud system. In the proposed system, tasks are distributed among available virtual machines (VM), individual results are then merged for the final adaptation of the learning model. Performance evaluation is carried out using decision trees and using fuzzy classifiers, on KDD99, one of the largest datasets for IDS. Segmentation of the dataset is done in order to mimic the behavior of real-time data traffic occurred in a real cloud environment. The experimental results show that the proposed approach reduces the execution time with improved accuracy, and is fault-tolerant when handling VM failures. The system is a proof-of-concept model for a scalable, cloud-based distributed system that is able to explore untapped resources, and may be used as a base model for a real-time hierarchical IDS.

2017-11-27
Pang, Y., Xue, X., Namin, A. S..  2016.  Early Identification of Vulnerable Software Components via Ensemble Learning. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). :476–481.

Software components, which are vulnerable to being exploited, need to be identified and patched. Employing any prevention techniques designed for the purpose of detecting vulnerable software components in early stages can reduce the expenses associated with the software testing process significantly and thus help building a more reliable and robust software system. Although previous studies have demonstrated the effectiveness of adapting prediction techniques in vulnerability detection, the feasibility of those techniques is limited mainly because of insufficient training data sets. This paper proposes a prediction technique targeting at early identification of potentially vulnerable software components. In the proposed scheme, the potentially vulnerable components are viewed as mislabeled data that may contain true but not yet observed vulnerabilities. The proposed hybrid technique combines the supports vector machine algorithm and ensemble learning strategy to better identify potential vulnerable components. The proposed vulnerability detection scheme is evaluated using some Java Android applications. The results demonstrated that the proposed hybrid technique could identify potentially vulnerable classes with high precision and relatively acceptable accuracy and recall.

2017-09-19
Huo, Jing, Gao, Yang, Shi, Yinghuan, Yang, Wanqi, Yin, Hujun.  2016.  Ensemble of Sparse Cross-Modal Metrics for Heterogeneous Face Recognition. Proceedings of the 2016 ACM on Multimedia Conference. :1405–1414.

Heterogeneous face recognition aims to identify or verify person identity by matching facial images of different modalities. In practice, it is known that its performance is highly influenced by modality inconsistency, appearance occlusions, illumination variations and expressions. In this paper, a new method named as ensemble of sparse cross-modal metrics is proposed for tackling these challenging issues. In particular, a weak sparse cross-modal metric learning method is firstly developed to measure distances between samples of two modalities. It learns to adjust rank-one cross-modal metrics to satisfy two sets of triplet based cross-modal distance constraints in a compact form. Meanwhile, a group based feature selection is performed to enforce that features in the same position of two modalities are selected simultaneously. By neglecting features that attribute to "noise" in the face regions (eye glasses, expressions and so on), the performance of learned weak metrics can be markedly improved. Finally, an ensemble framework is incorporated to combine the results of differently learned sparse metrics into a strong one. Extensive experiments on various face datasets demonstrate the benefit of such feature selection especially when heavy occlusions exist. The proposed ensemble metric learning has been shown superiority over several state-of-the-art methods in heterogeneous face recognition.

2017-02-23
A. Soliman, L. Bahri, B. Carminati, E. Ferrari, S. Girdzijauskas.  2015.  "DIVa: Decentralized identity validation for social networks". 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :383-391.

Online Social Networks exploit a lightweight process to identify their users so as to facilitate their fast adoption. However, such convenience comes at the price of making legitimate users subject to different threats created by fake accounts. Therefore, there is a crucial need to empower users with tools helping them in assigning a level of trust to whomever they interact with. To cope with this issue, in this paper we introduce a novel model, DIVa, that leverages on mining techniques to find correlations among user profile attributes. These correlations are discovered not from user population as a whole, but from individual communities, where the correlations are more pronounced. DIVa exploits a decentralized learning approach and ensures privacy preservation as each node in the OSN independently processes its local data and is required to know only its direct neighbors. Extensive experiments using real-world OSN datasets show that DIVa is able to extract fine-grained community-aware correlations among profile attributes with average improvements up to 50% than the global approach.