Biblio
For modern Automatic Test Equipment (ATE), one of the most daunting tasks conducting Information Assurance (IA). In addition, there is a desire to Network ATE to allow for information sharing and deployment of software. This is complicated by the fact that typically ATE are “unmanaged” systems in that most are configured, deployed, and then mostly left alone. This results in systems that are not patched with the latest Operating System updates and in fact may be running on legacy Operating Systems which are no longer supported (like Windows XP or Windows 7 for instance). A lot of this has to do with the cost of keeping a system updated on a continuous basis and regression testing the Test Program Sets (TPS) that run on them. Given that an Automated Test System can have thousands of Test Programs running on it, the cost and time involved in doing complete regression testing on all the Test Programs can be extremely expensive. In addition to the Test Programs themselves some Test Programs rely on third party Software and / or custom developed software that is required for the Test Programs to run. Add to this the requirement to perform software steering through all the Test Program paths, the length of time required to validate a Test Program could be measured in months in some cases. If system updates are performed once a month like some Operating System updates this could consume all the available time of the Test Station or require a fleet of Test Stations to be dedicated just to do the required regression testing. On the other side of the coin, a Test System running an old unpatched Operating System is a prime target for any manner of virus or other IA issues. This paper will discuss some of the pro's and con's of a managed Test System and how it might be accomplished.
Modern software development frequently uses third-party packages, raising the concern of supply chain security attacks. Many attackers target popular package managers, like npm, and their users with supply chain attacks. In 2021 there was a 650% year-on-year growth in security attacks by exploiting Open Source Software's supply chain. Proactive approaches are needed to predict package vulnerability to high-risk supply chain attacks. The goal of this work is to help software developers and security specialists in measuring npm supply chain weak link signals to prevent future supply chain attacks by empirically studying npm package metadata.
In this paper, we analyzed the metadata of 1.63 million JavaScript npm packages. We propose six signals of security weaknesses in a software supply chain, such as the presence of install scripts, maintainer accounts associated with an expired email domain, and inactive packages with inactive maintainers. One of our case studies identified 11 malicious packages from the install scripts signal. We also found 2,818 maintainer email addresses associated with expired domains, allowing an attacker to hijack 8,494 packages by taking over the npm accounts. We obtained feedback on our weak link signals through a survey responded to by 470 npm package developers. The majority of the developers supported three out of our six proposed weak link signals. The developers also indicated that they would want to be notified about weak links signals before using third-party packages. Additionally, we discussed eight new signals suggested by package developers.
How can high-level directives concerning risk, cybersecurity and compliance be operationalized in the central nervous system of any organization above a certain complexity? How can the effectiveness of technological solutions for security be proven and measured, and how can this technology be aligned with the governance and financial goals at the board level? These are the essential questions for any CEO, CIO or CISO that is concerned with the wellbeing of the firm. The concept of Zero Trust (ZT) approaches information and cybersecurity from the perspective of the asset to be protected, and from the value that asset represents. Zero Trust has been around for quite some time. Most professionals associate Zero Trust with a particular architectural approach to cybersecurity, involving concepts such as segments, resources that are accessed in a secure manner and the maxim “always verify never trust”. This paper describes the current state of the art in Zero Trust usage. We investigate the limitations of current approaches and how these are addressed in the form of Critical Success Factors in the Zero Trust Framework developed by ON2IT ‘Zero Trust Innovators’ (1). Furthermore, this paper describes the design and engineering of a Zero Trust artefact that addresses the problems at hand (2), according to Design Science Research (DSR). The last part of this paper outlines the setup of an empirical validation trough practitioner oriented research, in order to gain a broader acceptance and implementation of Zero Trust strategies (3). The final result is a proposed framework and associated technology which, via Zero Trust principles, addresses multiple layers of the organization to grasp and align cybersecurity risks and understand the readiness and fitness of the organization and its measures to counter cybersecurity risks.
Measuring software complexity is key in managing the software lifecycle and in controlling its maintenance. While there are well-established and comprehensive metrics to measure the complexity of the software code, assessment of the complexity of software designs remains elusive. Moreover, there are no clear guidelines to help software designers chose alternatives that reduce design complexity, improve design comprehensibility, and improve the maintainability of the software. This paper outlines a language independent approach to measuring software design complexity using objective and deterministic metrics. The paper outlines the metrics for two major software design notations; UML Class Diagrams and UML State Machines. The approach is based on the analysis of the design elements and their mutual interactions. The approach can be extended to cover other UML design notations.
This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.
The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.
As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.
Software metrics are widely used to measure the quality of software and to give an early indication of the efficiency of the development process in industry. There are many well-established frameworks for measuring the quality of source code through metrics, but limited attention has been paid to the quality of software models. In this article, we evaluate the quality of state machine models specified using the Analytical Software Design (ASD) tooling. We discuss how we applied a number of metrics to ASD models in an industrial setting and report about results and lessons learned while collecting these metrics. Furthermore, we recommend some quality limits for each metric and validate them on models developed in a number of industrial projects.
Most security software tools try to detect malicious components by cryptographic hashes, signatures or based on their behavior. The former, is a widely adopted approach based on Integrity Measurement Architecture (IMA) enabling appraisal and attestation of system components. The latter, however, may induce a very long time until misbehavior of a component leads to a successful detection. Another approach is a Dynamic Runtime Attestation (DRA) based on the comparison of binary code loaded in the memory and well-known references. Since DRA is a complex approach, involving multiple related components and often complex attestation strategies, a flexible and extensible architecture is needed. In a cooperation project an architecture was designed and a Proof of Concept (PoC) successfully developed and evaluated. To achieve needed flexibility and extensibility, the implementation facilitates central components providing attestation strategies (guidelines). These guidelines define and implement the necessary steps for all relevant attestation operations, i.e. measurement, reference generation and verification.
Based on the analysis relationships of challenger and attestation in remote attestation process, we propose a dynamic remote attestation model based on concerns. By combines the trusted root and application of dynamic credible monitoring module, Convert the Measurement for all load module of integrity measurement architecture into the Attestation of the basic computing environments, dynamic credible monitoring module, and request service software module. Discuss the rationality of the model. The model used Merkel hash tree to storage applications software integrity metrics, both to protect the privacy of the other party application software, and also improves the efficiency of remote attestation. Experimental prototype system shows that the model can verify the dynamic behavior of the software, to make up for the lack of static measure.