Biblio
We introduce FairSwap – an efficient protocol for fair exchange of digital goods using smart contracts. A fair exchange protocol allows a sender S to sell a digital commodity x for a fixed price p to a receiver R. The protocol is said to be secure if R only pays if he receives the correct x. Our solution guarantees fairness by relying on smart contracts executed over decentralized cryptocurrencies, where the contract takes the role of an external judge that completes the exchange in case of disagreement. While in the past there have been several proposals for building fair exchange protocols over cryptocurrencies, our solution has two distinctive features that makes it particular attractive when users deal with large commodities. These advantages are: (1) minimizing the cost for running the smart contract on the blockchain, and (2) avoiding expensive cryptographic tools such as zero-knowledge proofs. In addition to our new protocols, we provide formal security definitions for smart contract based fair exchange, and prove security of our construction. Finally, we illustrate several applications of our basic protocol and evaluate practicality of our approach via a prototype implementation for fairly selling large files over the cryptocurrency Ethereum. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer
Some online communities are better than others in standardizing and automating the attribution process. This study examines how automated attribution can alleviate attribution apprehension and thus facilitate creative integration in open communities. Attribution apprehension, i.e., a user's anxiety over proper attribution of reused artifacts, adversely impacts the tendencies to engage in the integration process. Because open communities thrive on the basis of fairness, automated attribution features are essential in fostering creative integration. This study draws upon task-technology fit to craft a theoretical framework for explaining this phenomenon, reviews current tools for automated attribution in different communities and describes findings of a pilot survey on how those tools can encourage creative integration.
Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that guarantees that either fairness is guaranteed or that each honest party obtains a monetary penalty from the adversary. Protocols for this task are typically designed in an hybrid model where parties have access to a "claim-or-refund" transaction functionality denote FCR*. In this work, we obtain improvements on the efficiency of these constructions by amortizing the cost over multiple executions of secure computation with penalties. More precisely, for computational security parameter λ, we design a protocol that implements l = poly\vphantom\\(λ) instances of secure computation with penalties where the total number of calls to FCR* is independent of l.
Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that tolerate an arbitrary number of corruptions. In this work, we improve the efficiency of protocols for secure computation with penalties in a hybrid model where parties have access to the "claim-or-refund" transaction functionality. Our first improvement is for the ladder protocol of Bentov and Kumaresan (Crypto 2014) where we improve the dependence of the script complexity of the protocol (which corresponds to miner verification load and also space on the blockchain) on the number of parties from quadratic to linear (and in particular, is completely independent of the underlying function). Our second improvement is for the see-saw protocol of Kumaresan et al. (CCS 2015) where we reduce the total number of claim-or-refund transactions and also the script complexity from quadratic to linear in the number of parties.
Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that tolerate an arbitrary number of corruptions. In this work, we improve the efficiency of protocols for secure computation with penalties in a hybrid model where parties have access to the "claim-or-refund" transaction functionality. Our first improvement is for the ladder protocol of Bentov and Kumaresan (Crypto 2014) where we improve the dependence of the script complexity of the protocol (which corresponds to miner verification load and also space on the blockchain) on the number of parties from quadratic to linear (and in particular, is completely independent of the underlying function). Our second improvement is for the see-saw protocol of Kumaresan et al. (CCS 2015) where we reduce the total number of claim-or-refund transactions and also the script complexity from quadratic to linear in the number of parties. We also present a 'dual-mode' protocol that offers different guarantees depending on the number of corrupt parties: (1) when s
Privacy analysis is essential in the society. Data privacy preservation for access control, guaranteed service in wireless sensor networks are important parts. In programs' verification, we not only consider about these kinds of safety and liveness properties but some security policies like noninterference, and observational determinism which have been proposed as hyper properties. Fairness is widely applied in verification for concurrent systems, wireless sensor networks and embedded systems. This paper studies verification and analysis for proving security-relevant properties and hyper properties by proposing deductive proof rules under fairness requirements (constraints).