Gomathi, S., Parmar, Nilesh, Devi, Jyoti, Patel, Namrata.
2020.
Detecting Malware Attack on Cloud using Deep Learning Vector Quantization. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :356—361.
In recent times cloud services are used widely and due to which there are so many attacks on the cloud devices. One of the major attacks is DDos (distributed denial-of-service) -attack which mainly targeted the Memcached which is a caching system developed for speeding the websites and the networks through Memcached's database. The DDoS attack tries to destroy the database by creating a flood of internet traffic at the targeted server end. Attackers send the spoofing applications to the vulnerable UDP Memcached server which even manipulate the legitimate identity of the sender. In this work, we have proposed a vector quantization approach based on a supervised deep learning approach to detect the Memcached attack performed by the use of malicious firmware on different types of Cloud attached devices. This vector quantization approach detects the DDoas attack performed by malicious firmware on the different types of cloud devices and this also classifies the applications which are vulnerable to attack based on cloud-The Hackbeased services. The result computed during the testing shows the 98.2 % as legally positive and 0.034% as falsely negative.
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.
2020.
Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
S, Naveen, Puzis, Rami, Angappan, Kumaresan.
2020.
Deep Learning for Threat Actor Attribution from Threat Reports. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–6.
Threat Actor Attribution is the task of identifying an attacker responsible for an attack. This often requires expert analysis and involves a lot of time. There had been attempts to detect a threat actor using machine learning techniques that use information obtained from the analysis of malware samples. These techniques will only be able to identify the attack, and it is trivial to guess the attacker because various attackers may adopt an attack method. A state-of-the-art method performs attribution of threat actors from text reports using Machine Learning and NLP techniques using Threat Intelligence reports. We use the same set of Threat Reports of Advanced Persistent Threats (APT). In this paper, we propose a Deep Learning architecture to attribute Threat actors based on threat reports obtained from various Threat Intelligence sources. Our work uses Neural Networks to perform the task of attribution and show that our method makes the attribution more accurate than other techniques and state-of-the-art methods.
Liu, Shuyong, Jiang, Hongrui, Li, Sizhao, Yang, Yang, Shen, Linshan.
2020.
A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :39–42.
Anomaly detection classification technology based on deep learning is one of the crucial technologies supporting network security. However, as the data increasing, this traditional model cannot guarantee that the false alarm rate is minimized while meeting the high detection rate. Additionally, distribution of imbalanced abnormal samples will lead to an increase in the error rate of the classification results. In this work, since CNN is effective in network intrusion classification, we embed a compressed feature layer in CNN (Convolutional Neural Networks). The purpose is to improve the efficiency of network intrusion detection. After our model was trained for 55 epochs and we set the learning rate of the model to 0.01, the detection rate reaches over 98%.