Visible to the public Biblio

Filters: Keyword is Intellectual Property Protection  [Clear All Filters]
2022-06-08
Wang, Runhao, Kang, Jiexiang, Yin, Wei, Wang, Hui, Sun, Haiying, Chen, Xiaohong, Gao, Zhongjie, Wang, Shuning, Liu, Jing.  2021.  DeepTrace: A Secure Fingerprinting Framework for Intellectual Property Protection of Deep Neural Networks. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :188–195.

Deep Neural Networks (DNN) has gained great success in solving several challenging problems in recent years. It is well known that training a DNN model from scratch requires a lot of data and computational resources. However, using a pre-trained model directly or using it to initialize weights cost less time and often gets better results. Therefore, well pre-trained DNN models are valuable intellectual property that we should protect. In this work, we propose DeepTrace, a framework for model owners to secretly fingerprinting the target DNN model using a special trigger set and verifying from outputs. An embedded fingerprint can be extracted to uniquely identify the information of model owner and authorized users. Our framework benefits from both white-box and black-box verification, which makes it useful whether we know the model details or not. We evaluate the performance of DeepTrace on two different datasets, with different DNN architectures. Our experiment shows that, with the advantages of combining white-box and black-box verification, our framework has very little effect on model accuracy, and is robust against different model modifications. It also consumes very little computing resources when extracting fingerprint.

Dhoot, Anshita, Zong, Boyang, Saeed, Muhammad Salman, Singh, Karan.  2021.  Security Analysis of Private Intellectual Property. 2021 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1–7.

Intellectual Property Rights (IPR) results from years of research and wisdom by property owners, and it plays an increasingly important role in promoting economic development, technological progress, and cultural prosperity. Thus, we need to strengthen the degree of protection of IPR. However, as internet technology continues to open up the market for IPR, the ease of network operation has led to infringement of IPR in some cases. Intellectual property infringement has occurred in some cases. Also, Internet development's concealed and rapid nature has led to the fact that IPR infringers cannot be easily detected. This paper addresses how to protect the rights and interests of IPR holders in the context of the rapid development of the internet. This paper explains the IPR and proposes an algorithm to enhance security for a better security model to protect IPR. This proposes optimization techniques to detect intruder attacks for securing IPR, by using support vector machines (SVM), it provides better results to secure public and private intellectual data by optimizing technologies.

2021-08-11
Xue, Mingfu, Wu, Zhiyu, He, Can, Wang, Jian, Liu, Weiqiang.  2020.  Active DNN IP Protection: A Novel User Fingerprint Management and DNN Authorization Control Technique. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :975—982.
The training process of deep learning model is costly. As such, deep learning model can be treated as an intellectual property (IP) of the model creator. However, a pirate can illegally copy, redistribute or abuse the model without permission. In recent years, a few Deep Neural Networks (DNN) IP protection works have been proposed. However, most of existing works passively verify the copyright of the model after the piracy occurs, and lack of user identity management, thus cannot provide commercial copyright management functions. In this paper, a novel user fingerprint management and DNN authorization control technique based on backdoor is proposed to provide active DNN IP protection. The proposed method can not only verify the ownership of the model, but can also authenticate and manage the user's unique identity, so as to provide a commercially applicable DNN IP management mechanism. Experimental results on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets show that the proposed method can achieve high detection rate for user authentication (up to 100% in the three datasets). Illegal users with forged fingerprints cannot pass authentication as the detection rates are all 0 % in the three datasets. Model owner can verify his ownership since he can trigger the backdoor with a high confidence. In addition, the accuracy drops are only 0.52%, 1.61 % and -0.65% on CIFAR-10, CIFAR-100 and Fashion-MNIST, respectively, which indicate that the proposed method will not affect the performance of the DNN models. The proposed method is also robust to model fine-tuning and pruning attacks. The detection rates for owner verification on CIFAR-10, CIFAR-100 and Fashion-MNIST are all 100% after model pruning attack, and are 90 %, 83 % and 93 % respectively after model fine-tuning attack, on the premise that the attacker wants to preserve the accuracy of the model.
2021-06-28
Latha Ch., Mary, Bazil Raj, A.A., Abhikshit, L..  2020.  Design and Implementation of a Secure Physical Unclonable Function In FPGA. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1083–1089.
A Field Programmable Gate Array (FPGA) is a digital Integrated Circuit made up of interconnected functional blocks, which can be programmed by the end-user to perform required logic functions. As FPGAs are re-programmable, partially re-configurable and have lowertime to market, FPGA has become a vital component in the field of electronics. FPGAs are undergoing many security issues as the adversaries are trying to make profits by replicating the original design, without any investment. The major security issues are cloning, counterfeiting, reverse engineering, Physical tampering, and insertion of malicious components, etc. So, there is a need for security of FPGAs. A Secret key must be embedded in an IC, to provide identification and authentication to it. Physical Unclonable Functions (PUFs) can provide these secret keys, by using the physical properties of the chip. These physical properties are not reproducible even by the manufacturer. Hence the responses produced by the PUF are unique for every individual chip. The method of generating unique binary signatures helps in cryptographic key generation, digital rights management, Intellectual Property (IP) protection, IC counterfeit prevention, and device authentication. The PUFs are very promising in signature generation in the field of hardware security. In this paper, the secret binary responses is generated with the help of a delay based Ring Oscillator PUF, which does not use a clock circuit in its architecture.
2020-08-28
He, Chengkang, Cui, Aijiao, Chang, Chip-Hong.  2019.  Identification of State Registers of FSM Through Full Scan by Data Analytics. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Finite-state machine (FSM) is widely used as control unit in most digital designs. Many intellectual property protection and obfuscation techniques leverage on the exponential number of possible states and state transitions of large FSM to secure a physical design with the reason that it is challenging to retrieve the FSM design from its downstream design or physical implementation without knowledge of the design. In this paper, we postulate that this assumption may not be sustainable with big data analytics. We demonstrate by applying a data mining technique to analyze sufficiently large amount of data collected from a full scan design to identify its FSM state registers. An impact metric is introduced to discriminate FSM state registers from other registers. A decision tree algorithm is constructed from the scan data for the regression analysis of the dependency of other registers on a chosen register to deduce its impact. The registers with the greater impact are more likely to be the FSM state registers. The proposed scheme is applied on several complex designs from OpenCores. The experiment results show the feasibility of our scheme in correctly identifying most FSM state registers with a high hit rate for a large majority of the designs.

2020-07-30
Holland, Martin, Stjepandić, Josip, Nigischer, Christopher.  2018.  Intellectual Property Protection of 3D Print Supply Chain with Blockchain Technology. 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). :1—8.
Within “Industrie 4.0” approach 3D printing technology is characterized as one of the disruptive innovations. Conventional supply chains are replaced by value-added networks. The spatially distributed development of printed components, e.g. for the rapid delivery of spare parts, creates a new challenge when differentiating between “original part”, “copy” or “counterfeit” becomes necessary. This is especially true for safety-critical products. Based on these changes classic branded products adopt the characteristics of licensing models as we know them in the areas of software and digital media. This paper describes the use of digital rights management as a key technology for the successful transition to Additive Manufacturing methods and a key for its commercial implementation and the prevention of intellectual property theft. Risks will be identified along the process chain and solution concepts are presented. These are currently being developed by an 8-partner project named SAMPL (Secure Additive Manufacturing Platform).
Liang, Tung-Che, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Programmable Daisychaining of Microelectrodes for IP Protection in MEDA Biochips. 2019 IEEE International Test Conference (ITC). :1—10.

As digital microfluidic biochips (DMFBs) make the transition to the marketplace for commercial exploitation, security and intellectual property (IP) protection are emerging as important design considerations. Recent studies have shown that DMFBs are vulnerable to reverse engineering aimed at stealing biomolecular protocols (IP theft). The IP piracy of proprietary protocols may lead to significant losses for pharmaceutical and biotech companies. The micro-electrode-dot-array (MEDA) is a next-generation DMFB platform that supports real-time sensing of droplets and has the added advantage of important security protections. However, real-time sensing offers opportunities to an attacker to steal the biochemical IP. We show that the daisychaining of microelectrodes and the use of one-time-programmability in MEDA biochips provides effective bitstream scrambling of biochemical protocols. To examine the strength of this solution, we develop a SAT attack that can unscramble the bitstreams through repeated observations of bioassays executed on the MEDA platform. Based on insights gained from the SAT attack, we propose an advanced defense against IP theft. Simulation results using real-life biomolecular protocols confirm that while the SAT attack is effective for simple instances, our advanced defense can thwart it for realistic MEDA biochips and real-life protocols.

Jiang, Tao, Hu, Shuijing.  2019.  Intellectual Property Protection for AI-Related Inventions in Japan. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :286—289.
To increase the possibility of patent entitled of artificial intelligence related inventions at the Japanese patent office, this paper analyzes the Japanese patent act and patent examination guidelines. The approach for assessing whether a computer related invention belongs to a eligible subject-matter includes two steps. The first step is whether a computer related invention meets the definition of an "invention" that is "creation of a technical idea utilizing the laws of nature" . The second step is whether a computer related invention meets "idea based on the standpoint of software" . From the perspective of patent analysis, Japan's artificial intelligence technology is leading the world, second only to the United States. In this field, the Japanese patent office is one of the most important intellectual property offices, and its legislation and practice of patent eligibility review for artificial intelligence related inventions have an important impact on the world.
2018-01-23
Lin, Q., Wong, S..  2017.  A study of intellectual property protection for mass innovation spaces. 2017 International Conference on Applied System Innovation (ICASI). :973–975.

Intellectual property is inextricably linked to the innovative development of mass innovation spaces. The synthetic development of intellectual property and mass innovation spaces will fundamentally support the new economic model of “mass entrepreneurship and innovation”. As such, it is critical to explore intellectual property service standards for mass innovation spaces and to steer mass innovation spaces to the creation of an intellectual property service system catering to “makers”. In addition, it is crucial to explore intellectual cluster management innovations for mass innovation spaces.

2017-02-27
Mohsen, R., Pinto, A. M..  2015.  Algorithmic information theory for obfuscation security. 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE). 04:76–87.

The main problem in designing effective code obfuscation is to guarantee security. State of the art obfuscation techniques rely on an unproven concept of security, and therefore are not regarded as provably secure. In this paper, we undertake a theoretical investigation of code obfuscation security based on Kolmogorov complexity and algorithmic mutual information. We introduce a new definition of code obfuscation that requires the algorithmic mutual information between a code and its obfuscated version to be minimal, allowing for controlled amount of information to be leaked to an adversary. We argue that our definition avoids the impossibility results of Barak et al. and is more advantageous then obfuscation indistinguishability definition in the sense it is more intuitive, and is algorithmic rather than probabilistic.