Biblio
Trust management issue in cloud domain has been a persistent research topic discussed among scholars. Similar issue is bound to occur in the surfacing fog domain. Although fog and cloud are relatively similar, evaluating trust in fog domain is more challenging than in cloud. Fog's high mobility support, distributive nature, and closer distance to end user means that they are likely to operate in vulnerable environments. Unlike cloud, fog has little to no human intervention, and lack of redundancy. Hence, it could experience downtime at any given time. Thus it is harder to trust fogs given their unpredictable status. These distinguishing factors, combined with the existing factors used for trust evaluation in cloud can be used as metrics to evaluate trust in fog. This paper discusses a use case of a campus scenario with several fog servers, and the metrics used in evaluating the trustworthiness of the fog servers. While fuzzy logic method is used to evaluate the trust, the contribution of this study is the identification of fuzzy logic configurations that could alter the trust value of a fog.
We propose a distributed and adaptive trust evaluation algorithm (DATEA) to calculate the trust between nodes. First, calculate the communication trust by using the number of data packets between nodes, and predict the trust based on the trend of this value, calculate the comprehensive trust by combining the history trust with the predict value; calculate the energy trust based on the residual energy of nodes; calculate the direct trust by using the communication trust and energy trust. Second, calculate the recommendation trust based on the recommendation reliability and the recommendation familiarity; put forward the adaptively weighting method, and calculate the integrate direct trust by combining the direct trust with recommendation trust. Third, according to the integrate direct trust, considering the factor of trust propagation distance, the indirect trust between nodes is calculated. Simulation experiments show that the proposed algorithm can effectively avoid the attacks of malicious nodes, besides, the calculated direct trust and indirect trust about normal nodes are more conformable to the actual situation.
Mobile Ad Hoc Network (MANET) is a multi-hop temporary and autonomic network comprised of a set of mobile nodes. MANETs have the features of non-center, dynamically changing topology, multi-hop routing, mobile nodes, limited resources and so on, which make it face more threats. Trust evaluation is used to support nodes to cooperate in a secure and trustworthy way through evaluating the trust of participating nodes in MANETs. However, many trust evaluation models proposed for MANETs still have many problems and shortcomings. In this paper, we review the existing researches, then analyze and compare the proposed trust evaluation models by presenting and applying uniform criteria in order to point out a number of open issues and challenges and suggest future research trends.
Cloud Computing has emerged as a paradigm to deliver on demand resources to facilitate the customers with access to their infrastructure and applications as per their requirements on a subscription basis. An exponential increase in the number of cloud services in the past few years provides more options for customers to choose from. To assist customers in selecting a most trustworthy cloud provider, a unified trust evaluation framework is needed. Trust helps in the estimation of competency of a resource provider in completing a task thus enabling users to select the best resources in the heterogeneous cloud infrastructure. Trust estimates obtained using the AHP process exhibit a deviation for parameters that are not in direct proportion to the contributing attributes. Such deviation can be removed using the Fuzzy AHP model. In this paper, a Fuzzy AHP based hierarchical trust model has been proposed to rate the service providers and their various plans for infrastructure as a service.