Biblio
The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.
Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.
This paper describes the technology of neural network application to solve the problem of information security incidents forecasting. We describe the general problem of analyzing and predicting time series in a graphical and mathematical setting. To solve this problem, it is proposed to use a neural network model. To solve the task of forecasting a time series of information security incidents, data are generated and described on the basis of which the neural network is trained. We offer a neural network structure, train the neural network, estimate it's adequacy and forecasting ability. We show the possibility of effective use of a neural network model as a part of an intelligent forecasting system.
Cyber defense can no longer be limited to intrusion detection methods. These systems require malicious activity to enter an internal network before an attack can be detected. Having advanced, predictive knowledge of future attacks allow a potential victim to heighten security and possibly prevent any malicious traffic from breaching the network. This paper investigates the use of Auto-Regressive Integrated Moving Average (ARIMA) models and Bayesian Networks (BN) to predict future cyber attack occurrences and intensities against two target entities. In addition to incident count forecasting, categorical and binary occurrence metrics are proposed to better represent volume forecasts to a victim. Different measurement periods are used in time series construction to better model the temporal patterns unique to each attack type and target configuration, seeing over 86% improvement over baseline forecasts. Using ground truth aggregated over different measurement periods as signals, a BN is trained and tested for each attack type and the obtained results provided further evidence to support the findings from ARIMA. This work highlights the complexity of cyber attack occurrences; each subset has unique characteristics and is influenced by a number of potential external factors.
The recently developed deep belief network (DBN) has been shown to be an effective methodology for solving time series forecasting problems. However, the performance of DBN is seriously depended on the reasonable setting of hyperparameters. At present, random search, grid search and Bayesian optimization are the most common methods of hyperparameters optimization. As an alternative, a state-of-the-art derivative-free optimizer-negative correlation search (NCS) is adopted in this paper to decide the sizes of DBN and learning rates during the training processes. A comparative analysis is performed between the proposed method and other popular techniques in the time series forecasting experiment based on two types of time series datasets. Experiment results statistically affirm the efficiency of the proposed model to obtain better prediction results compared with conventional neural network models.
Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.
Volume anomaly such as distributed denial-of-service (DDoS) has been around for ages but with advancement in technologies, they have become stronger, shorter and weapon of choice for attackers. Digital forensic analysis of intrusions using alerts generated by existing intrusion detection system (IDS) faces major challenges, especially for IDS deployed in large networks. In this paper, the concept of automatically sifting through a huge volume of alerts to distinguish the different stages of a DDoS attack is developed. The proposed novel framework is purpose-built to analyze multiple logs from the network for proactive forecast and timely detection of DDoS attacks, through a combined approach of Shannon-entropy concept and clustering algorithm of relevant feature variables. Experimental studies on a cyber-range simulation dataset from the project industrial partners show that the technique is able to distinguish precursor alerts for DDoS attacks, as well as the attack itself with a very low false positive rate (FPR) of 22.5%. Application of this technique greatly assists security experts in network analysis to combat DDoS attacks.
Vulnerabilities usually represents the risk level of software, and it is of high value to forecast vulnerabilities so as to evaluate the security level of software. Current researches mainly focus on predicting the number of vulnerabilities or the occurrence time of vulnerabilities, however, to our best knowledge, there are no other researches focusing on the prediction of vulnerabilities' severity, which we think is an important aspect reflecting vulnerabilities and software security. To compensate for this deficiency, we borrows the grey model GM(1,1) from grey system theory to forecast the severity of vulnerabilities. The experiment is carried on the real data collected from CVE and proves the feasibility of our predicting method.