Biblio
We consider an underlay cognitive network with secondary users that support full-duplex communication. In this context, we propose the application of antenna selection at the secondary destination node to improve the secondary user secrecy performance. Antenna selection rules for cases where exact and average knowledge of the eavesdropping channels are investigated. The secrecy outage probabilities for the secondary eavesdropping network are analyzed, and it is shown that the secrecy performance improvement due to antenna selection is due to coding gain rather than diversity gain. This is very different from classical antenna selection for data transmission, which usually leads to a higher diversity gain. Numerical simulations are included to verify the performance of the proposed scheme.
A full-duplex radio can transmit and receive simultaneously, and, hence, is a natural fit for realizing an in-band relay system. Most of existing full-duplex relay designs, however, simply forward an amplified version of the received signal without decoding it, and, thereby, also amplify the noise at the relay, offsetting throughput gains of full-duplex relaying. To overcome this issue, we explore an alternative: demodulate-and-forward. This paper presents the design and implementation of DelayForward (DF), a practical system that fully extracts the relay gains of full-duplex demodulate-and-forward mechanism. DF allows a relay to remove its noise from the signal it receives via demodulation and forward the clean signal to destination with a small delay. While such delay-and-forward mechanism avoids forwarding the noise at the relay, the half-duplex destination, however, now receives the combination of the direct signal from a source and the delayed signal from a relay. Unlike previous theoretical work, which mainly focuses on deriving the capacity of demodulate-and-forward relaying, we observe that such combined signals have a structure similar to the convolutional code, and, hence, propose a novel viterbi-type decoder to recover data from those combined signals in practice. Another challenge is that the performance of full-duplex relay is inherently bounded by the minimum of the relay's SNR and the destination's SNR. To break this limitation, we further develop a power allocation scheme to optimize the capacity of DF. We have built a prototype of DF using USRP software radios. Experimental results show that our power-adaptive DF delivers the throughput gain of 1.25×, on average, over the state-of-the-art full-duplex relay design. The gain is as high as 2.03× for the more challenged clients.