Biblio
Friends, family and colleagues at work may repeatedly observe how their peers unlock their smartphones. These "insiders" may combine multiple partial observations to form a hypothesis of a target's secret. This changing landscape requires that we update the methods used to assess the security of unlocking mechanisms against human shoulder surfing attacks. In our paper, we introduce a methodology to study shoulder surfing risks in the insider threat model. Our methodology dissects the authentication process into minimal observations by humans. Further processing is based on simulations. The outcome is an estimate of the number of observations needed to break a mechanism. The flexibility of this approach benefits the design of new mechanisms. We demonstrate the application of our methodology by performing an analysis of the SwiPIN scheme published at CHI 2015. Our results indicate that SwiPIN can be defeated reliably by a majority of the population with as few as 6 to 11 observations.
Smartphones nowadays are customized to help users with their daily tasks such as storing important data or making transactions through the internet. With the sensitivity of the data involved, authentication mechanism such as fixed-text password, PIN, or unlock patterns are used to safeguard these data against intruders. However, these mechanisms have the risk from security threats such as cracking or shoulder surfing. To enhance mobile and/or information security, this study aimed to develop a free-form handwriting gesture user authentication for smartphones. It also tried to discover the static and dynamic handwriting features that significantly influence the recognition of a legitimate user. The experiment was then conducted by asking thirty (30) individuals to draw or swipe using their fingertip their desired free-form security pattern ten (10) times. These patterns were then cleaned and processed, and extracted seven (7) static and eleven (11) dynamic handwriting features. By means of Neural Network classifier of the RapidMiner data mining tool, these features were used to develop, validate, and test a model for user authentication. The model showed a very promising recognition rate of 96.67%. The model is further tested through a prototype, and it still gave a very satisfactory result.