Biblio
The advent of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) enabled a new class of smart and interactive devices. With their continuous connectivity and their access to valuable information in both the digital and physical world, they are attractive targets for security attackers. Hence, with their integration into both the industry and consumer devices, they added a new surface for cybersecurity attacks. These potential threats call for special care of security vulnerabilities during the design of IoT devices and CPS. The design of secure systems is a complex task, especially if they must adhere to other constraints, such as performance, power consumption, and others. A range of design space exploration tools have been proposed in academics, which aim to support system designers in their task of finding the optimal selection of hardware components and task mappings. Said tools offer a limited way of modeling attack scenarios as constraints for a system under design. The framework proposed in this paper aims at closing this gap, offering system designers a way to consider security attacks and security risks during the early design phase. It offers designers to model security constraints from the view of potential attackers, assessing the probability of successful security attacks and security risk. The framework's feasibility and performance is demonstrated by revisiting a potential system design of an industry partner.
Multiple techniques for modeling cybersecurity attacks and defense have been developed. The use of tree- structures as well as techniques proposed by several firms (such as Lockheed Martin's Cyber Kill Chain, Microsoft's STRIDE and the MITRE ATT&CK frameworks) have all been demonstrated. These approaches model actions that can be taken to attack or stopped to secure infrastructure and other resources, at different levels of detail.This paper builds on prior work on using the Blackboard Architecture for cyberwarfare and proposes a generalized solution for modeling framework/paradigm-based attacks that go beyond the deployment of a single exploit against a single identified target. The Blackboard Architecture Cyber Command Entity attack Route (BACCER) identification system combines rules and facts that implement attack type determination and attack decision making logic with actions that implement reconnaissance techniques and attack and defense actions. BACCER's efficacy to model examples of tree-structures and other models is demonstrated herein.
A wide variety of security software systems need to be integrated into a Security Orchestration Platform (SecOrP) to streamline the processes of defending against and responding to cybersecurity attacks. Lack of interpretability and interoperability among security systems are considered the key challenges to fully leverage the potential of the collective capabilities of different security systems. The processes of integrating security systems are repetitive, time-consuming and error-prone; these processes are carried out manually by human experts or using ad-hoc methods. To help automate security systems integration processes, we propose an Ontology-driven approach for Security OrchestrAtion Platform (OnSOAP). The developed solution enables interpretability, and interoperability among security systems, which may exist in operational silos. We demonstrate OnSOAP's support for automated integration of security systems to execute the incident response process with three security systems (Splunk, Limacharlie, and Snort) for a Distributed Denial of Service (DDoS) attack. The evaluation results show that OnSOAP enables SecOrP to interpret the input and output of different security systems, produce error-free integration details, and make security systems interoperable with each other to automate and accelerate an incident response process.
Feature extraction and feature selection are the first tasks in pre-processing of input logs in order to detect cybersecurity threats and attacks by utilizing data mining techniques in the field of Artificial Intelligence. When it comes to the analysis of heterogeneous data derived from different sources, these tasks are found to be time-consuming and difficult to be managed efficiently. In this paper, we present an approach for handling feature extraction and feature selection utilizing machine learning algorithms for security analytics of heterogeneous data derived from different network sensors. The approach is implemented in Apache Spark, using its python API, named pyspark.
Nowadays the adoption of IoT solutions is gaining high momentum in several fields, including energy, home and environment monitoring, transportation, and manufacturing. However, cybersecurity attacks to low-cost end-user devices can severely undermine the expected deployment of IoT solutions in a broad range of scenarios. To face these challenges, emerging software-based networking features can introduce new security enablers, providing further scalability and flexibility required to cope with massive IoT. In this paper, we present a novel framework aiming to exploit SDN/NFV-based security features and devise new efficient integration with existing IoT security approaches. The potential benefits of the proposed framework is validated in two case studies. Finally, a feasibility study is presented, accounting for potential interactions with open-source SDN/NFV projects and relevant standardization activities.
As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.