Biblio
Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.
With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.
The use of Electric Vehicle (EV) is growing rapidly due to its environmental benefits. However, the major problem of these vehicles is their limited battery, the lack of charging stations and the re-charge time. Introducing Information and Communication Technologies, in the field of EV, will improve energy efficiency, energy consumption predictions, availability of charging stations, etc. The Internet of Vehicles based only on Electric Vehicles (IoEV) is a complex system. It is composed of vehicles, humans, sensors, road infrastructure and charging stations. All these entities communicate using several communication technologies (ZigBee, 802.11p, cellular networks, etc). IoEV is therefore vulnerable to significant attacks such as DoS, false data injection, modification. Hence, security is a crucial factor for the development and the wide deployment of Internet of Electric Vehicles (IoEV). In this paper, we present an overview of security issues of the IoEV architecture and we highlight open issues that make the IoEV security a challenging research area in the future.
In the wake of diversity of service requirements and increasing push for extreme efficiency, adaptability propelled by machine learning (ML) a.k.a self organizing networks (SON) is emerging as an inevitable design feature for future mobile 5G networks. The implementation of SON with ML as a foundation requires significant amounts of real labeled sample data for the networks to train on, with high correlation between the amount of sample data and the effectiveness of the SON algorithm. As generally real labeled data is scarce therefore it can become bottleneck for ML empowered SON for unleashing their true potential. In this work, we propose a method of expanding these sample data sets using Generative Adversarial Networks (GANs), which are based on two interconnected deep artificial neural networks. This method is an alternative to taking more data to expand the sample set, preferred in cases where taking more data is not simple, feasible, or efficient. We demonstrate how the method can generate large amounts of realistic synthetic data, utilizing the GAN's ability of generation and discrimination, able to be easily added to the sample set. This method is, as an example, implemented with Call Data Records (CDRs) containing the start hour of a call and the duration of the call, in minutes taken from a real mobile operator. Results show that the method can be used with a relatively small sample set and little information about the statistics of the true CDRs and still make accurate synthetic ones.
With the advance of fifth generation (5G) networks, network density needs to grow significantly in order to meet the required capacity demands. A massive deployment of small cells may lead to a high cost for providing fiber connectivity to each node. Consequently, many small cells are expected to be connected through wireless links to the umbrella eNodeB, leading to a mesh backhaul topology. This backhaul solution will most probably be composed of high capacity point-to-point links, typically operating in the millimeter wave (mmWave) frequency band due to its massive bandwidth availability. In this paper, we propose a mathematical model that jointly solves the user association and backhaul routing problem in the aforementioned context, aiming at the energy efficiency maximization of the network. Our study considers the energy consumption of both the access and backhaul links, while taking into account the capacity constraints of all the nodes as well as the fulfillment of the service-level agreements (SLAs). Due to the high complexity of the optimal solution, we also propose an energy efficient heuristic algorithm (Joint), which solves the discussed joint problem, while inducing low complexity in the system. We numerically evaluate the algorithm performance by comparing it not only with the optimal solution but also with reference approaches under different traffic load scenarios and backhaul parameters. Our results demonstrate that Joint outperforms the state-of-the-art, while being able to find good solutions, close to optimal, in short time.
Root cause analysis (RCA) is a common and recurring task performed by operators of cellular networks. It is done mainly to keep customers satisfied with the quality of offered services and to maximize return on investment (ROI) by minimizing and where possible eliminating the root causes of faults in cellular networks. Currently, the actual detection and diagnosis of faults or potential faults is still a manual and slow process often carried out by network experts who manually analyze and correlate various pieces of network data such as, alarms, call traces, configuration management (CM) and key performance indicator (KPI) data in order to come up with the most probable root cause of a given network fault. In this paper, we propose an automated fault detection and diagnosis solution called adaptive root cause analysis (ARCA). The solution uses measurements and other network data together with Bayesian network theory to perform automated evidence based RCA. Compared to the current common practice, our solution is faster due to automation of the entire RCA process. The solution is also cheaper because it needs fewer or no personnel in order to operate and it improves efficiency through domain knowledge reuse during adaptive learning. As it uses a probabilistic Bayesian classifier, it can work with incomplete data and it can handle large datasets with complex probability combinations. Experimental results from stratified synthesized data affirmatively validate the feasibility of using such a solution as a key part of self-healing (SH) especially in emerging self-organizing network (SON) based solutions in LTE Advanced (LTE-A) and 5G.
5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.
Vehicular ad-Hoc Networks (VANETs) have been promoted as a key technology that can provide a wide variety of services such as traffic management, passenger safety, as well as travel convenience and comfort. VANETs are now proposed to be part of the upcoming Fifth Generation (5G) technology, integrated with Software Defined Networking (SDN), as key enabler of 5G. The technology of fog computing in 5G turned out to be an adequate solution for faster processing in delay sensitive application, such as VANETs, being a hybrid solution between fully centralized and fully distributed networks. In this paper, we propose a three-way integration between VANETs, SDN, and 5G for a resilient VANET security design approach, which strikes a good balance between network, mobility, performance and security features. We show how such an approach can secure VANETs from different types of attacks such as Distributed Denial of Service (DDoS) targeting either the controllers or the vehicles in the network, and how to trace back the source of the attack. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security, while maintaining low overhead and minimal configuration.
In this work, we constructively combine adaptive wormholes with channel-reciprocity based key establishment (CRKE), which has been proposed as a lightweight security solution for IoT devices and might be even more important for the 5G Tactile Internet and its embedded low-end devices. We present a new secret key generation protocol where two parties compute shared cryptographic keys under narrow-band multi-path fading models over a delayed digital channel. The proposed approach furthermore enables distance-bounding the key establishment process via the coherence time dependencies of the wireless channel. Our scheme is thoroughly evaluated both theoretically and practically. For the latter, we used a testbed based on the IEEE 802.15.4 standard and performed extensive experiments in a real-world manufacturing environment. Additionally, we demonstrate adaptive wormhole attacks (AWOAs) and their consequences on several physical-layer security schemes. Furthermore, we proposed a countermeasure that minimizes the risk of AWOAs.
Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones—the fastest growing technology in the world that now reaches around 80% of humanity—can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems.