Biblio
Lack of effective accountability mechanisms brings a series of security problems for Internet today. In Next Generation Internet based on IPv6, the system of identity authentication and IP verification is the key to accounting ability. Source Address Validation Improvement (SAVI) can protect IP source addresses from being faked. But without identity authentication mechanism and certain relationship between IP and accountable identity, the accountability is still unreliable. To solve this problem, most research focus on embedding accountable identity into IP address which need either changing DHCP client or twice DHCP request process due to the separate process of user authentication and address assignment. Different from previous research, this paper first analyzes the problems and requirements of combining Web Portal or 802.1X, two main identity authentication mechanism (AAA), with the accountable address assignment in SAVI frame-work. Then a novel Cooperative mechanism for Accountable IP address assignment (CAIP) is proposed based on 802.1X and SAVI, which takes into account the validation of IP address, the authenticity and accountability of identity at the same time. Finally, we build up prototype system for both Fat AP and Thin AP wireless scenarios and simulate the performance of CAIP through large-scale campus networks' data logs. The experiment result shows that the IP addresses and identities in CAIP are protective and accountable. Compared with other previous research, CAIP is not only transparent to the terminals and networks, but also low impact on network equipment, which makes CAIP easy deployment with high compatibility and low cost.
In this paper we investigate deceptive defense strategies for web servers. Web servers are widely exploited resources in the modern cyber threat landscape. Often these servers are exposed in the Internet and accessible for a broad range of valid as well as malicious users. Common security strategies like firewalls are not sufficient to protect web servers. Deception based Information Security enables a large set of counter measures to decrease the efficiency of intrusions. In this work we depict several techniques out of the reconnaissance process of an attacker. We match these with deceptive counter measures. All proposed measures are implemented in an experimental web server with deceptive counter measure abilities. We also conducted an experiment with honeytokens and evaluated delay strategies against automated scanner tools.
We consider a cloud based multiserver system consisting of a set of replica application servers behind a set of proxy (indirection) servers which interact directly with clients over the Internet. We study a proactive moving-target defense to thwart a DDoS attacker's reconnaissance phase and consequently reduce the attack's impact. The defense is effectively a moving-target (motag) technique in which the proxies dynamically change. The system is evaluated using an AWS prototype of HTTP redirection and by numerical evaluations of an “adversarial” coupon-collector mathematical model, the latter allowing larger-scale extrapolations.
Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.
Traditional address scanning attacks mainly rely on the naive 'brute forcing' approach, where the entire IPv4 address space is exhaustively searched by enumerating different possibilities. However, such an approach is inefficient for IPv6 due to its vast subnet size (i.e., 264). As a result, it is widely assumed that address scanning attacks are less feasible in IPv6 networks. In this paper, we evaluate new IPv6 reconnaissance techniques in real IPv6 networks and expose how to leverage the Domain Name System (DNS) for IPv6 network reconnaissance. We collected IPv6 addresses from 5 regions and 100,000 domains by exploiting DNS reverse zone and DNSSEC records. We propose a DNS Guard (DNSG) to efficiently detect DNS reconnaissance attacks in IPv6 networks. DNSG is a plug and play component that could be added to the existing infrastructure. We implement DNSG using Bro and Suricata. Our results demonstrate that DNSG could effectively block DNS reconnaissance attacks.
With the rapidly increasing number of Internet of Things (IoT) devices and their extensive integration into peoples' daily lives, the security of those devices is of primary importance. Nonetheless, many IoT devices suffer from the absence, or the bad application, of security concepts, which leads to severe vulnerabilities in those devices. To achieve early detection of potential vulnerabilities, network scanner tools are frequently used. However, most of those tools are highly specialized; thus, multiple tools and a meaningful correlation of their results are required to obtain an adequate listing of identified network vulnerabilities. To simplify this process, we propose a modular framework for automated network reconnaissance and vulnerability indication in IP-based networks. It allows integrating a diverse set of tools as either, scanning tools or analysis tools. Moreover, the framework enables result aggregation of different modules and allows information sharing between modules facilitating the development of advanced analysis modules. Additionally, intermediate scanning and analysis data is stored, enabling a historical view of derived information and also allowing users to retrace decision-making processes. We show the framework's modular capabilities by implementing one scanner module and three analysis modules. The automated process is then evaluated using an exemplary scenario with common IP-based IoT components.
Moving target defense (MTD) is a proactive defense mechanism of changing the attack surface to increase an attacker's confusion and/or uncertainty, which invalidates its intelligence gained through reconnaissance and/or network scanning attacks. In this work, we propose software-defined networking (SDN)-based MTD technique using the shuffling of IP addresses and port numbers aiming to obfuscate both network and transport layers' real identities of the host and the service for defending against the network reconnaissance and scanning attacks. We call our proposed MTD technique Random Host and Service Multiplexing, namely RHSM. RHSM allows each host to use random, multiple virtual IP addresses to be dynamically and periodically shuffled. In addition, it uses short-lived, multiple virtual port numbers for an active service running on the host. Our proposed RHSM is novel in that we employ multiplexing (or de-multiplexing) to dynamically change and remap from all the virtual IPs of the host to the real IP or the virtual ports of the services to the real port, respectively. Via extensive simulation experiments, we prove how effectively and efficiently RHSM outperforms a baseline counterpart (i.e., a static network without RHSM) in terms of the attack success probability and defense cost.
To gain strategic insight into defending against the network reconnaissance stage of advanced persistent threats, we recreate the escalating competition between scans and deceptive views on a Software Defined Network (SDN). Our threat model presumes the defense is a deceptive network view unique for each node on the network. It can be configured in terms of the number of honeypots and subnets, as well as how real nodes are distributed across the subnets. It assumes attacks are NMAP ping scans that can be configured in terms of how many IP addresses are scanned and how they are visited. Higher performing defenses detect the scanner quicker while leaking as little information as possible while higher performing attacks are better at evading detection and discovering real nodes. By using Artificial Intelligence in the form of a competitive coevolutionary genetic algorithm, we can analyze the configurations of high performing static defenses and attacks versus their evolving adversary as well as the optimized configuration of the adversary itself. When attacks and defenses both evolve, we can observe that the extent of evolution influences the best configurations.
This study aims to enhance the security of Moodle system environment during the Execution of online exams, Taking into consideration the most common problems facing online exams and working to solve them. This was handled by improving the security performance of Moodle Quiz tool, which is one of the most important tools in the learning Management system as general and in Moodle system as well. In this paper we include two enhancement aspects: The first aspect is solving the problem of losing the answers during sudden short disconnection of the network because of the server crash or any other reasons, the second aspect is Increasing the level of confidentiality of e-Quiz by preventing accessing the Quiz from more than one computer or browser at the same time. In order to verify the efficiency of the new quiz tool features, the upgraded tool have been tested using an experimental test Moodle site.
In this paper, a dynamic cybersecurity protection method based on software-defined networking (SDN) is proposed, according to the protection requirement analysis for industrial control systems (ICSs). This method can execute security response measures by SDN, such as isolation, redirection etc., based on the real-time intrusion detection results, forming a detecting-responding closed-loop security control. In addition, moving target defense (MTD) concept is introduced to the protection for ICSs, where topology transformation and IP/port hopping are realized by SDN, which can confuse and deceive the attackers and prevent attacks at the beginning, protection ICSs in an active manner. The simulation results verify the feasibility of the proposed method.
Multicast distribution employs the model of many-to-many so that it is a more efficient way of data delivery compared to traditional one-to-one unicast distribution, which can benefit many applications such as media streaming. However, the lack of security features in its nature makes multicast technology much less popular in an open environment such as the Internet. Internet Service Providers (ISPs) take advantage of IP multicast technology's high efficiency of data delivery to provide Internet Protocol Television (IPTV) to their users. But without the full control on their networks, ISPs cannot collect revenue for the services they provide. Secure Internet Group Management Protocol (SIGMP), an extension of Internet Group Management Protocol (IGMP), and Group Security Association Management Protocol (GSAM), have been proposed to enforce receiver access control at the network level of IP multicast. In this paper, we analyze operational details and issues of both SIGMP and GSAM. An examination of the performance of both protocols is also conducted.
Recently, data protection has become increasingly important in cloud environments. The cloud platform has global user information, rich storage resource allocation information, and a fuller understanding of data attributes. At the same time, there is an urgent need for data access control to provide data security, and software-defined network, as a ready-made facility, has a global network view, global network management capabilities, and programable network rules. In this paper, we present an approach, named High-Performance Software-Defined Data Access Network (HP-SDDAN), providing software-defined data access network architecture, global data attribute management and attribute-based data access network. HP-SDDAN combines the excellent features of cloud platform and software-defined network, and fully considers the performance to implement software-defined data access network. In evaluation, we verify the effectiveness and efficiency of HP-SDDAN implementation, with only 1.46% overhead to achieve attribute-based data access control of attribute-based differential privacy.
WireGuard is a free and open source Virtual Private Network (VPN) that aims to replace IPsec and OpenVPN. It is based on a new cryptographic protocol derived from the Noise Protocol Framework. This paper presents the first mechanised cryptographic proof of the protocol underlying WireGuard, using the CryptoVerif proof assistant. We analyse the entire WireGuard protocol as it is, including transport data messages, in an ACCE-style model. We contribute proofs for correctness, message secrecy, forward secrecy, mutual authentication, session uniqueness, and resistance against key compromise impersonation, identity mis-binding, and replay attacks. We also discuss the strength of the identity hiding provided by WireGuard. Our work also provides novel theoretical contributions that are reusable beyond WireGuard. First, we extend CryptoVerif to account for the absence of public key validation in popular Diffie-Hellman groups like Curve25519, which is used in many modern protocols including WireGuard. To our knowledge, this is the first mechanised cryptographic proof for any protocol employing such a precise model. Second, we prove several indifferentiability lemmas that are useful to simplify the proofs for sequences of key derivations.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.