Visible to the public Biblio

Found 479 results

Filters: Keyword is IP networks  [Clear All Filters]
2020-11-02
Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].

2020-10-29
Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

2020-10-12
Okutan, Ahmet, Cheng, Fu-Yuan, Su, Shao-Hsuan, Yang, Shanchieh Jay.  2019.  Dynamic Generation of Empirical Cyberattack Models with Engineered Alert Features. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Due to the increased diversity and complexity of cyberattacks, innovative and effective analytics are needed in order to identify critical cyber incidents on a corporate network even if no ground truth data is available. This paper develops an automated system which processes a set of intrusion alerts to create behavior aggregates and then classifies these aggregates into empirical attack models through a dynamic Bayesian approach with innovative feature engineering methods. Each attack model represents a unique collective attack behavior that helps to identify critical activities on the network. Using 2017 National Collegiate Penetration Testing Competition data, it is demonstrated that the developed system is capable of generating and refining unique attack models that make sense to human, without a priori knowledge.
2020-10-06
Januário, Fábio, Cardoso, Alberto, Gil, Paulo.  2018.  Resilience Enhancement through a Multi-agent Approach over Cyber-Physical Systems. 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). :231—236.

Cyber-physical systems are an important component of most industrial infrastructures that allow the integration of control systems with state of the art information technologies. These systems aggregate distinct communication platforms and networked devices with different capabilities. This integration, has brought into play new uncertainties, not only from the tangible physical world, but also from a cyber space perspective. In light of this situation, awareness and resilience are invaluable properties of these kind of systems. The present work proposes an architecture based on a distributed middleware that relying on a hierarchical multi-agent framework for resilience enhancement. The proposed architecture takes into account physical and cyber vulnerabilities and guarantee state and context awareness, and a minimum level of acceptable operation, in response to physical disturbances and malicious attacks. This framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analysed. Results from tests prove the relevance and benefits of the proposed approach.

Kalwar, Abhishek, Bhuyan, Monowar H., Bhattacharyya, Dhruba K., Kadobayashi, Youki, Elmroth, Erik, Kalita, Jugal K..  2019.  TVis: A Light-weight Traffic Visualization System for DDoS Detection. 2019 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). :1—6.

With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.

2020-10-05
Xue, Baoze, Shen, Pubing, Wu, Bo, Wang, Xiaoting, Chen, Shuwen.  2019.  Research on Security Protection of Network Based on Address Layout Randomization from the Perspective of Attackers. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1475–1478.
At present, the network architecture is based on the TCP/IP protocol and node communications are achieved by the IP address and identifier of the node. The IP address in the network remains basically unchanged, so it is more likely to be attacked by network intruder. To this end, it is important to make periodic dynamic hopping in a specific address space possible, so that an intruder fails to obtain the internal network address and grid topological structure in real time and to continue to perform infiltration by the building of a new address space layout randomization system on the basis of SDN from the perspective of an attacker.
2020-09-11
ALEKSIEVA, Yulia, VALCHANOV, Hristo, ALEKSIEVA, Veneta.  2019.  An approach for host based botnet detection system. 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). :1—4.
Most serious occurrence of modern malware is Botnet. Botnet is a rapidly evolving problem that is still not well understood and studied. One of the main goals for modern network security is to create adequate techniques for the detection and eventual termination of Botnet threats. The article presents an approach for implementing a host-based Intrusion Detection System for Botnet attack detection. The approach is based on a variation of a genetic algorithm to detect anomalies in a case of attacks. An implementation of the approach and experimental results are presented.
2020-09-08
Guimarães, Carlos, Quevedo, José, Ferreira, Rui, Corujo, Daniel, Aguiar, Rui L..  2019.  Content Retrieval while Moving Across IP and NDN Network Architectures. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Research on Future Internet has gained traction in recent years, with a variety of clean-slate network architectures being proposed. The realization of such proposals may lead to a period of coexistence with the current Internet, creating a heterogeneous Future Internet. In such a vision, mobile nodes (MNs) can move across access networks supporting different network architectures, while being able to maintain the access to content during this movement. In order to support such scenarios, this paper proposes an inter-network architecture mobility framework that allows MNs to move across different network architectures without losing access to the contents being accessed. The usage of the proposed framework is exemplified and evaluated in a mobility scenario targeting IP and NDN network architectures in a content retrieval use case. The obtained results validate the proposed framework while highlighting the impact on the overall communication between the MN and content source.
Chen, Yu-Cheng, Mooney, Vincent, Grijalva, Santiago.  2019.  A Survey of Attack Models for Cyber-Physical Security Assessment in Electricity Grid. 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC). :242–243.
This paper surveys some prior work regarding attack models in a cyber-physical system and discusses the potential benefits. For comparison, the full paper will model a bad data injection attack scenario in power grid using the surveyed prior work.
2020-09-04
Saad, Muhammad, Cook, Victor, Nguyen, Lan, Thai, My T., Mohaisen, Aziz.  2019.  Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1175—1187.
Bitcoin is the leading example of a blockchain application that facilitates peer-to-peer transactions without the need for a trusted intermediary. This paper considers possible attacks related to the decentralized network architecture of Bitcoin. We perform a data driven study of Bitcoin and present possible attacks based on spatial and temporal characteristics of its network. Towards that, we revisit the prior work, dedicated to the study of centralization of Bitcoin nodes over the Internet, through a fine-grained analysis of network distribution, and highlight the increasing centralization of the Bitcoin network over time. As a result, we show that Bitcoin is vulnerable to spatial, temporal, spatio-temporal, and logical partitioning attacks with an increased attack feasibility due to network dynamics. We verify our observations by simulating attack scenarios and the implications of each attack on the Bitcoin . We conclude with suggested countermeasures.
Walck, Matthew, Wang, Ke, Kim, Hyong S..  2019.  TendrilStaller: Block Delay Attack in Bitcoin. 2019 IEEE International Conference on Blockchain (Blockchain). :1—9.
We present TendrilStaller, an eclipse attack targeting at Bitcoin's peer-to-peer network. TendrilStaller enables an adversary to delay block propagation to a victim for 10 minutes. The adversary thus impedes the victim from getting the latest blockchain state. It only takes as few as one Bitcoin full node and two light weight nodes to perform the attack. The light weight nodes perform a subset of the functions of a full Bitcoin node. The attack exploits a recent block propagation protocol introduced in April 2016. The protocol prescribes a Bitcoin node to select 3 neighbors that can send new blocks unsolicited. These neighbors are selected based on their recent performance in providing blocks quickly. The adversary induces the victim to select 3 attack nodes by having attack nodes send valid blocks to the victim more quickly than other neighbors. For this purpose, the adversary deploys a handful of light weight nodes so that the adversary itself receives new blocks faster. The adversary then performs the attack to delay blocks propagated to the victim. We implement the attack on top of current default Bitcoin protocol We deploy the attack nodes in multiple locations around the globe and randomly select victim nodes. Depending on the round-trip time between the adversary and the victim, 50%-85% of the blocks could be delayed to the victim. We further show that the adoption of light weight nodes greatly increases the attack probability by 15% in average. Finally, we propose several countermeasures to mitigate this eclipse attack.
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
2020-08-28
Chukry, Souheil, Sbeyti, Hassan.  2019.  Security Enhancement in Storage Area Network. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.

2020-08-24
Starke, Allen, Nie, Zixiang, Hodges, Morgan, Baker, Corey, McNair, Janise.  2019.  Denial of Service Detection Mitigation Scheme using Responsive Autonomic Virtual Networks (RAvN). MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
In this paper we propose a responsive autonomic and data-driven adaptive virtual networking framework (RAvN) that integrates the adaptive reconfigurable features of a popular SDN platform called open networking operating system (ONOS), the network performance statistics provided by traffic monitoring tools such as T-shark or sflow-RT and analytics and decision making skills provided from new and current machine learning techniques to detect and mitigate anomalous behavior. For this paper we focus on the development of novel detection schemes using a developed Centroid-based clustering technique and the Intragroup variance of data features within network traffic (C. Intra), with a multivariate gaussian distribution model fitted to the constant changes in the IP addresses of the network to accurately assist in the detection of low rate and high rate denial of service (DoS) attacks. We briefly discuss our ideas on the development of the decision-making and execution component using the concept of generating adaptive policy updates (i.e. anomalous mitigation solutions) on-the-fly to the ONOS SDN controller for updating network configurations and flows. In addition we provide the analysis on anomaly detection schemes used for detecting low rate and high rate DoS attacks versus a commonly used unsupervised machine learning technique Kmeans. The proposed schemes outperformed Kmeans significantly. The multivariate clustering method and the intragroup variance recorded 80.54% and 96.13% accuracy respectively while Kmeans recorded 72.38% accuracy.
Gupta, Nitika, Traore, Issa, de Quinan, Paulo Magella Faria.  2019.  Automated Event Prioritization for Security Operation Center using Deep Learning. 2019 IEEE International Conference on Big Data (Big Data). :5864–5872.
Despite their popularity, Security Operation Centers (SOCs) are facing increasing challenges and pressure due to the growing volume, velocity and variety of the IT infrastructure and security data observed on a daily basis. Due to the mixed performance of current technological solutions, e.g. IDS and SIEM, there is an over-reliance on manual analysis of the events by human security analysts. This creates huge backlogs and slow down considerably the resolution of critical security events. Obvious solutions include increasing accuracy and efficiency in the automation of crucial aspects of the SOC workflow, such as the event classification and prioritization. In the current paper, we present a new approach for SOC event classification by identifying a set of new features using graphical analysis and classifying using a deep neural network model. Experimental evaluation using real SOC event log data yields very encouraging results in terms of classification accuracy.
2020-08-17
He, Peixuan, Xue, Kaiping, Xu, Jie, Xia, Qiudong, Liu, Jianqing, Yue, Hao.  2019.  Attribute-Based Accountable Access Control for Multimedia Content with In-Network Caching. 2019 IEEE International Conference on Multimedia and Expo (ICME). :778–783.
Nowadays, multimedia content retrieval has become the major service requirement of the Internet and the traffic of these contents has dominated the IP traffic. To reduce the duplicated traffic and improve the performance of distributing massive volumes of multimedia contents, in-network caching has been proposed recently. However, because in-network content caching can be directly utilized to respond users' requests, multimedia content retrieval is beyond content providers' control and makes it hard for them to implement access control and service accounting. In this paper, we propose an attribute-based accountable access control scheme for multimedia content distribution while making the best of in-network caching, in which content providers can be fully offline. In our scheme, the attribute-based encryption at multimedia content provider side and access policy based authentication at the edge router side jointly ensure the secure access control, which is also efficient in both space and time. Besides, secure service accounting is implemented by letting edge routers collect service credentials generated during users' request process. Through the informal security analysis, we prove the security of our scheme. Simulation results demonstrate that our scheme is efficient with acceptable overhead.
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
Yao, Yepeng, Su, Liya, Lu, Zhigang, Liu, Baoxu.  2019.  STDeepGraph: Spatial-Temporal Deep Learning on Communication Graphs for Long-Term Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :120–127.
Network communication data are high-dimensional and spatiotemporal, and their information content is often degraded by common traffic analysis methods. For long-term network attack detection based on network flows, it is important to extract a discriminative, high-dimensional intrinsic representation of such flows. This work focuses on a hybrid deep neural network design using a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) with graph similarity measures to learn high-dimensional representations from the network traffic. In particular, examining a set of network flows, we commence by constructing a temporal communication graph and then computing graph kernel matrices. Having obtained the kernel matrices, for each graph, we use the kernel value between graphs and calculate graph characterization vectors by graph signal processing. This vector can be regarded as a kernel-based similarity embedding vector of the graph that integrates structural similarity information and leverages efficient graph kernel using the graph Laplacian matrix. Our approach exploits graph structures as the additional prior information, the graph Laplacian matrix for feature extraction and hybrid deep learning models for long-term information learning on communication graphs. Experiments on two real-world network attack datasets show that our approach can extract more discriminative representations, leading to an improved accuracy in a supervised classification task. The experimental results show that our method increases the overall accuracy by approximately 10%-15%.
2020-08-07
Liu, Xiaohu, Li, Laiqiang, Ma, Zhuang, Lin, Xin, Cao, Junyang.  2019.  Design of APT Attack Defense System Based on Dynamic Deception. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1655—1659.
Advanced Persistent Threat (APT) attack has the characteristics of complex attack means, long duration and great harmfulness. Based on the idea of dynamic deception, the paper proposed an APT defense system framework, and analyzed the deception defense process. The paper proposed a hybrid encryption communication mechanism based on socket, a dynamic IP address generation method based on SM4, a dynamic timing selection method based on Viterbi algorithm and a dynamic policy allocation mechanism based on DHCPv6. Tests show that the defense system can dynamically change and effectively defense APT attacks.
2020-08-03
Li, Guanyu, Zhang, Menghao, Liu, Chang, Kong, Xiao, Chen, Ang, Gu, Guofei, Duan, Haixin.  2019.  NETHCF: Enabling Line-rate and Adaptive Spoofed IP Traffic Filtering. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–12.
In this paper, we design NETHCF, a line-rate in-network system for filtering spoofed traffic. NETHCF leverages the opportunity provided by programmable switches to design a novel defense against spoofed IP traffic, and it is highly efficient and adaptive. One key challenge stems from the restrictions of the computational model and memory resources of programmable switches. We address this by decomposing the HCF system into two complementary components-one component for the data plane and another for the control plane. We also aggregate the IP-to-Hop-Count (IP2HC) mapping table for efficient memory usage, and design adaptive mechanisms to handle end-to-end routing changes, IP popularity changes, and network activity dynamics. We have built a prototype on a hardware Tofino switch, and our evaluation demonstrates that NETHCF can achieve line-rate and adaptive traffic filtering with low overheads.
2020-07-30
Patnaik, Satwik, Ashraf, Mohammed, Sinanoglu, Ozgur, Knechtel, Johann.  2018.  Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

With the globalization of manufacturing and supply chains, ensuring the security and trustworthiness of ICs has become an urgent challenge. Split manufacturing (SM) and layout camouflaging (LC) are promising techniques to protect the intellectual property (IP) of ICs from malicious entities during and after manufacturing (i.e., from untrusted foundries and reverse-engineering by end-users). In this paper, we strive for “the best of both worlds,” that is of SM and LC. To do so, we extend both techniques towards 3D integration, an up-and-coming design and manufacturing paradigm based on stacking and interconnecting of multiple chips/dies/tiers. Initially, we review prior art and their limitations. We also put forward a novel, practical threat model of IP piracy which is in line with the business models of present-day design houses. Next, we discuss how 3D integration is a naturally strong match to combine SM and LC. We propose a security-driven CAD and manufacturing flow for face-to-face (F2F) 3D ICs, along with obfuscation of interconnects. Based on this CAD flow, we conduct comprehensive experiments on DRC-clean layouts. Strengthened by an extensive security analysis (also based on a novel attack to recover obfuscated F2F interconnects), we argue that entering the next, third dimension is eminent for effective and efficient IP protection.

Sengupta, Anirban, Roy, Dipanjan.  2018.  Reusable intellectual property core protection for both buyer and seller. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—3.
This paper presents a methodology for IP core protection of CE devices from both buyer's and seller's perspective. In the presented methodology, buyer fingerprint is embedded along seller watermark during architectural synthesis phase of IP core design. The buyer fingerprint is inserted during scheduling phase while seller watermark is implanted during register allocation phase of architectural synthesis process. The presented approach provides a robust mechanisms of IP core protection for both buyer and seller at zero area overhead, 1.1 % latency overhead and 0.95 % design cost overhead compared to a similar approach (that provides only protection to IP seller).
Sun, Peiqi, Cui, Aijiao.  2019.  A New Pay-Per-Use Scheme for the Protection of FPGA IP. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—5.
Field-programmable gate arrays (FPGAs) are widely applied in various fields for its merit of reconfigurability. The reusable intellectual property (IP) design blocks are usually adopted in the more complex FPGA designs to shorten design cycle. IP infringement hence becomes a concern. In this paper, we propose a new pay-per-use scheme using the lock and key mechanism for the protection of FPGA IP. Physical Unclonable Function (PUF) is adopted to generate a unique ID for each IP instance. An extra Finite State Machine (FSM) is introduced for the secure retrieval of PUF information by the FPGA IP vendor. The lock is implemented on the original FSM. Only when the FPGA developer can provide a correct license, can the FSM be unlocked and start normal operation. The FPGA IP can hence be protected from illegal use or distribution. The scheme is applied on some benchmarks and the experimental results show that it just incurs acceptably low overhead while it can resist typical attacks.
Xiao, Lijun, Huang, Weihong, Deng, Han, Xiao, Weidong.  2019.  A hardware intellectual property protection scheme based digital compression coding technology. 2019 IEEE International Conference on Smart Cloud (SmartCloud). :75—79.

This paper presents a scheme of intellectual property protection of hardware circuit based on digital compression coding technology. The aim is to solve the problem of high embedding cost and low resource utilization of IP watermarking. In this scheme, the watermark information is preprocessed by dynamic compression coding around the idle circuit of FPGA, and the free resources of the surrounding circuit are optimized that the IP watermark can get the best compression coding model while the extraction and detection of IP core watermark by activating the decoding function. The experimental results show that this method not only expands the capacity of watermark information, but also reduces the cost of watermark and improves the security and robustness of watermark algorithm.

2020-07-24
Chernov, Denis, Sychugov, Alexey.  2019.  Development of a Mathematical Model of Threat to Information Security of Automated Process Control Systems. 2019 International Russian Automation Conference (RusAutoCon). :1—5.
The authors carry out the analysis of the process of modeling threats to information security of automated process control systems. Basic principles of security threats model formation are considered. The approach to protection of automated process control systems based on the Shtakelberg game in a strategic form was modeled. An abstract mathematical model of information security threats to automated process control systems was developed. A formalized representation of a threat model is described, taking into account an intruder's potential. Presentation of the process of applying the described threat model in the form of a continuous Deming-Shewhart cycle is proposed.