Biblio
The article deals with the development and implementation of a method for synthesizing structures of threats and risks to information security based on a fuzzy approach. We consider a method for modeling threat structures based on structural abstractions: aggregation, generalization, and Association. It is shown that the considered forms of structural abstractions allow implementing the processes of Ascending and Descending inheritance. characteristics of the threats. A database of fuzzy rules based on procedural abstractions has been developed and implemented in the fuzzy logic tool environment Fussy Logic.
The growth of the internet has brought along positive gains such as the emergence of a highly interconnected world. However, on the flip side, there has been a growing concern on how secure distributed systems can be built effectively and tested for security vulnerabilities prior to deployment. Developing a secure software product calls for a deep technical understanding of some complex issues with regards to the software and its operating environment, as well as embracing a systematic approach of analyzing the software. This paper proposes a method for identifying software security vulnerabilities from software requirement specifications written in Structured Object-oriented Formal Language (SOFL). Our proposed methodology leverages on the concept of providing an early focus on security by identifying potential security vulnerabilities at the requirement analysis and verification phase of the software development life cycle.
Machine learning and data mining algorithms typically assume that the training and testing data are sampled from the same fixed probability distribution; however, this violation is often violated in practice. The field of domain adaptation addresses the situation where this assumption of a fixed probability between the two domains is violated; however, the difference between the two domains (training/source and testing/target) may not be known a priori. There has been a recent thrust in addressing the problem of learning in the presence of an adversary, which we formulate as a problem of domain adaption to build a more robust classifier. This is because the overall security of classifiers and their preprocessing stages have been called into question with the recent findings of adversaries in a learning setting. Adversarial training (and testing) data pose a serious threat to scenarios where an attacker has the opportunity to ``poison'' the training or ``evade'' on the testing data set(s) in order to achieve something that is not in the best interest of the classifier. Recent work has begun to show the impact of adversarial data on several classifiers; however, the impact of the adversary on aspects related to preprocessing of data (i.e., dimensionality reduction or feature selection) has widely been ignored in the revamp of adversarial learning research. Furthermore, variable selection, which is a vital component to any data analysis, has been shown to be particularly susceptible under an attacker that has knowledge of the task. In this work, we explore avenues for learning resilient classification models in the adversarial learning setting by considering the effects of adversarial data and how to mitigate its effects through optimization. Our model forms a single convex optimization problem that uses the labeled training data from the source domain and known- weaknesses of the model for an adversarial component. We benchmark the proposed approach on synthetic data and show the trade-off between classification accuracy and skew-insensitive statistics.
In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their improvement.