Visible to the public Biblio

Filters: Keyword is Dynamics  [Clear All Filters]
2022-06-09
Karim, Hassan, Rawat, Danda B..  2021.  Evaluating Machine Learning Classifiers for Data Sharing in Internet of Battlefield Things. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :01–07.
The most widely used method to prevent adversaries from eavesdropping on sensitive sensor, robot, and war fighter communications is mathematically strong cryptographic algorithms. However, prevailing cryptographic protocol mandates are often made without consideration of resource constraints of devices in the internet of Battlefield Things (IoBT). In this article, we address the challenges of IoBT sensor data exchange in contested environments. Battlefield IoT (Internet of Things) devices need to exchange data and receive feedback from other devices such as tanks and command and control infrastructure for analysis, tracking, and real-time engagement. Since data in IoBT systems may be massive or sparse, we introduced a machine learning classifier to determine what type of data to transmit under what conditions. We compared Support Vector Machine, Bayes Point Match, Boosted Decision Trees, Decision Forests, and Decision Jungles on their abilities to recommend the optimal confidentiality preserving data and transmission path considering dynamic threats. We created a synthesized dataset that simulates platoon maneuvers and IED detection components. We found Decision Jungles to produce the most accurate results while requiring the least resources during training to produce those results. We also introduced the JointField blockchain network for joint and allied force data sharing. With our classifier, strategists, and system designers will be able to enable adaptive responses to threats while engaged in real-time field conflict.
2021-12-20
Cheng, Zhihao, Xu, Qiwei, Long, Sheng, Zhang, Yixuan.  2021.  Thrust Force Ripple Optimization of MEMS Permanent Magnet Linear Motor Based on Harmonic Current Injection. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
This paper presents a method optimizing the thrust force of a Micro Electro Mechanical System (MEMS) Permanent Magnet Linear Motor, based on harmonic current injection. Fourier decomposition is implemented to the air gap flux density of the motor to derive the fitting expression of the thrust force dependent to exciting current. Through analyzing the thrust force ripple of sinusoidal current excitement, the paper comes up with the strategy of harmonic current injection to eliminate the ripple component in the thrust force waveform. Mathematical demonstration is given that injecting harmonic current can totally eliminate the ripple caused by odd component of vertical air gap magnetic induction intensity. Simulation verification is implemented based on the 3rd and 7th harmonic injection control strategy, proving that the method is feasible for the thrust ripple is reduced to 4.3% of the value before optimazation. Experimental results lead to the consistent conclusion that the strategy shows good steady-state and dynamic performance.
Butchko, Daniel, Croteau, Brien, Kiriakidis, Kiriakos.  2021.  Cyber-Physical System Security of Surface Ships using Intelligent Constraints. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.

Cyber-physical systems are vulnerable to attacks that can cause them to reach undesirable states. This paper provides a theoretical solution for increasing the resiliency of control systems through the use of a high-authority supervisor that monitors and regulates control signals sent to the actuator. The supervisor aims to determine the control signal limits that provide maximum freedom of operation while protecting the system. For this work, a cyber attack is assumed to overwrite the signal to the actuator with Gaussian noise. This assumption permits the propagation of a state covariance matrix through time. Projecting the state covariance matrix on the state space reveals a confidence ellipse that approximates the reachable set. The standard deviation is found so that the confidence ellipse is tangential to the danger area in the state space. The process is applied to ship dynamics where an ellipse in the state space is transformed to an arc in the plane of motion. The technique is validated through the simulation of a ship traveling through a narrow channel while under the influence of a cyber attack.

2018-02-27
Sulavko, A. E., Eremenko, A. V., Fedotov, A. A..  2017.  Users' Identification through Keystroke Dynamics Based on Vibration Parameters and Keyboard Pressure. 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–7.

The paper considers an issues of protecting data from unauthorized access by users' authentication through keystroke dynamics. It proposes to use keyboard pressure parameters in combination with time characteristics of keystrokes to identify a user. The authors designed a keyboard with special sensors that allow recording complementary parameters. The paper presents an estimation of the information value for these new characteristics and error probabilities of users' identification based on the perceptron algorithms, Bayes' rule and quadratic form networks. The best result is the following: 20 users are identified and the error rate is 0.6%.

2017-03-08
Bando, S., Nozawa, A., Matsuya, Y..  2015.  Multidimensional directed coherence analysis of keystroke dynamics and physiological responses. 2015 International Conference on Noise and Fluctuations (ICNF). :1–4.

Techno-stress has been a problem in recent years with a development of information technology. Various studies have been reported about a relationship between key typing and psychosomatic state. Keystroke dynamics are known as dynamics of a key typing motion. The objective of this paper is to clarify the mechanism between keystroke dynamics and physiological responses. Inter-stroke time (IST) that was the interval between each keystroke was measured as keystroke dynamics. The physiological responses were heart rate variability (HRV) and respiration (Resp). The system consisted of IST, HRV, and Resp was applied multidimensional directed coherence in order to reveal a causal correlation. As a result, it was observed that strength of entrainment of physiological responses having fluctuation to IST differed in surround by the noise and a cognitive load. Specifically, the entrainment became weak as a cognitive resource devoted to IST was relatively increased with the keystroke motion had a robust rhythm. On the other hand, the entrainment became stronger as a cognitive resource devoted to IST was relatively decreased since the resource also devoted to the noise or the cognitive load.

Ding, C., Peng, J..  2015.  A hopping sensor deployment scheme based on virtual forces. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). :988–993.

Wireless sensor networks have been widely utilized in many applications such as environment monitoring and controlling. Appropriate sensor deployment scheme to achieve the maximal coverage is crucial for effectiveness of sensor network. In this paper, we study coverage optimization problem with hopping sensors. Although similar problem has been investigated when each mobile sensor has continuous dynamics, the problem is different for hopping sensor which has discrete and constraint dynamics. Based on the characteristics of hopping, we obtain dynamics equation of hopping sensors. Then we propose an enhanced virtual force algorithm as a deployment scheme to improve the coverage. A combination of attractive and repulsive forces generated by Voronoi neighbor sensors, obstacles and the centroid of local Voronoi cell is used to determine the motion paths for hopping sensors. Furthermore, a timer is designed to adjust the movement sequence of sensors, such that unnecessary movements can be reduced. Simulation results show that optimal coverage can be accomplished by hopping sensors in an energy efficient manner.