Visible to the public Biblio

Found 198 results

Filters: Keyword is Data analysis  [Clear All Filters]
2020-03-16
Ullah, Faheem, Ali Babar, M..  2019.  QuickAdapt: Scalable Adaptation for Big Data Cyber Security Analytics. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :81–86.
Big Data Cyber Security Analytics (BDCA) leverages big data technologies for collecting, storing, and analyzing a large volume of security events data to detect cyber-attacks. Accuracy and response time, being the most important quality concerns for BDCA, are impacted by changes in security events data. Whilst it is promising to adapt a BDCA system's architecture to the changes in security events data for optimizing accuracy and response time, it is important to consider large search space of architectural configurations. Searching a large space of configurations for potential adaptation incurs an overwhelming adaptation time, which may cancel the benefits of adaptation. We present an adaptation approach, QuickAdapt, to enable quick adaptation of a BDCA system. QuickAdapt uses descriptive statistics (e.g., mean and variance) of security events data and fuzzy rules to (re) compose a system with a set of components to ensure optimal accuracy and response time. We have evaluated QuickAdapt for a distributed BDCA system using four datasets. Our evaluation shows that on average QuickAdapt reduces adaptation time by 105× with a competitive adaptation accuracy of 70% as compared to an existing solution.
2020-03-09
Chhillar, Dheeraj, Sharma, Kalpana.  2019.  ACT Testbot and 4S Quality Metrics in XAAS Framework. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :503–509.

The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.

Khan, Iqra, Durad, Hanif, Alam, Masoom.  2019.  Data Analytics Layer For high-interaction Honeypots. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :681–686.

Security of VMs is now becoming a hot topic due to their outsourcing in cloud computing paradigm. All VMs present on the network are connected to each other, making exploited VMs danger to other VMs. and threats to organization. Rejuvenation of virtualization brought the emergence of hyper-visor based security services like VMI (Virtual machine introspection). As there is a greater chance for any intrusion detection system running on the same system, of being dis-abled by the malware or attacker. Monitoring of VMs using VMI, is one of the most researched and accepted technique, that is used to ensure computer systems security mostly in the paradigm of cloud computing. This thesis presents a work that is to integrate LibVMI with Volatility on a KVM, a Linux based hypervisor, to introspect memory of VMs. Both of these tools are used to monitor the state of live VMs. VMI capability of monitoring VMs is combined with the malware analysis and virtual honeypots to achieve the objective of this project. A testing environment is deployed, where a network of VMs is used to be introspected using Volatility plug-ins. Time execution of each plug-in executed on live VMs is calculated to observe the performance of Volatility plug-ins. All these VMs are deployed as Virtual Honeypots having honey-pots configured on them, which is used as a detection mechanism to trigger alerts when some malware attack the VMs. Using STIX (Structure Threat Information Expression), extracted IOCs are converted into the understandable, flexible, structured and shareable format.

2020-03-02
Yoshikawa, Takashi, Date, Susumu, Watashiba, Yasuhiro, Matsui, Yuki, Nozaki, Kazunori, Murakami, Shinya, Lee, Chonho, Hida, Masami, Shimojo, Shinji.  2019.  Secure Staging System for Highly Confidential Data Built on Reconfigurable Computing Platform. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :308–313.
Cloud use for High Performance Computing (HPC) and High Performance Data Analytics (HPDA) is increasing. The data are transferred to the cloud and usually left there even after the data being processed. There is security concern for such data being left online. We propose secure staging system to prepare not only data but also computing platform for processing the data dynamically just while the data is processed. The data plane of the secure staging system has dynamic reconfigurability with several lower-than-IP-layer partitioning mechanisms. The control plane consists of a scheduler and a resource provisioner working together to reconfigure the partitioning in the data plane dynamically. A field trial system is deployed for treating secure data in dental school to be processed in the computer center with the location distance of 1km. The system shows high score in the Common Vulnerability Scoring System (CVSS) evaluation.
2020-02-26
Padmanaban, R., Thirumaran, M., Sanjana, Victoria, Moshika, A..  2019.  Security Analytics For Heterogeneous Web. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.

In recent days, Enterprises are expanding their business efficiently through web applications which has paved the way for building good consumer relationship with its customers. The major threat faced by these enterprises is their inability to provide secure environments as the web applications are prone to severe vulnerabilities. As a result of this, many security standards and tools have been evolving to handle the vulnerabilities. Though there are many vulnerability detection tools available in the present, they do not provide sufficient information on the attack. For the long-term functioning of an organization, data along with efficient analytics on the vulnerabilities is required to enhance its reliability. The proposed model thus aims to make use of Machine Learning with Analytics to solve the problem in hand. Hence, the sequence of the attack is detected through the pattern using PAA and further the detected vulnerabilities are classified using Machine Learning technique such as SVM. Probabilistic results are provided in order to obtain numerical data sets which could be used for obtaining a report on user and application behavior. Dynamic and Reconfigurable PAA with SVM Classifier is a challenging task to analyze the vulnerabilities and impact of these vulnerabilities in heterogeneous web environment. This will enhance the former processing by analysis of the origin and the pattern of the attack in a more effective manner. Hence, the proposed system is designed to perform detection of attacks. The system works on the mitigation and prevention as part of the attack prediction.

2020-02-17
Rodriguez, Ariel, Okamura, Koji.  2019.  Generating Real Time Cyber Situational Awareness Information Through Social Media Data Mining. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:502–507.
With the rise of the internet many new data sources have emerged that can be used to help us gain insights into the cyber threat landscape and can allow us to better prepare for cyber attacks before they happen. With this in mind, we present an end to end real time cyber situational awareness system which aims to efficiently retrieve security relevant information from the social networking site Twitter.com. This system classifies and aggregates the data retrieved and provides real time cyber situational awareness information based on sentiment analysis and data analytics techniques. This research will assist security analysts to evaluate the level of cyber risk in their organization and proactively take actions to plan and prepare for potential attacks before they happen as well as contribute to the field through a cybersecurity tweet dataset.
Liu, Xiaobao, Wu, Qinfang, Sun, Jinhua, Xu, Xia, Wen, Yifan.  2019.  Research on Self-Healing Technology for Faults of Intelligent Distribution Network Communication System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1404–1408.
The intelligent power communication network is closely connected with the power system, and carries the data transmission and intelligent decision in a series of key services in the power system, which is an important guarantee for the smart power service. The self-healing control (SHC) of the distribution network monitors the data of each device and node in the distribution network in real time, simulates and analyzes the data, and predicts the hidden dangers in the normal operation of the distribution network. Control, control strategies such as correcting recovery and troubleshooting when abnormal or fault conditions occur, reducing human intervention, enabling the distribution network to change from abnormal operating state to normal operating state in time, preventing event expansion and reducing the impact of faults on the grid and users.
Hadar, Ethan, Hassanzadeh, Amin.  2019.  Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. 2019 IEEE 27th International Requirements Engineering Conference (RE). :330–339.

In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.

Li, Zhifeng, Li, Yintao, Lin, Peng.  2019.  The Security Evaluation of Big Data Research for Smart Grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1055–1059.

The technological development of the energy sector also produced complex data. In this study, the relationship between smart grid and big data approaches have been investigated. After analyzing which areas of the smart grid system use big data technologies and technologies, big data technologies for detecting smart grid attacks have received attention. Big data analytics can produce efficient solutions and it is especially important to choose which algorithms and metrics to use. For this reason, an application prototype has been proposed that uses a big data method to detect attacks on the smart grid. The algorithm with high accuracy was determined to be 92% for random forests and 87% for decision trees.

2020-01-21
Novikova, Evgenia, Bekeneva, Yana, Shorov, Andrey.  2019.  The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.
Aldairi, Maryam, Karimi, Leila, Joshi, James.  2019.  A Trust Aware Unsupervised Learning Approach for Insider Threat Detection. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :89–98.

With the rapidly increasing connectivity in cyberspace, Insider Threat is becoming a huge concern. Insider threat detection from system logs poses a tremendous challenge for human analysts. Analyzing log files of an organization is a key component of an insider threat detection and mitigation program. Emerging machine learning approaches show tremendous potential for performing complex and challenging data analysis tasks that would benefit the next generation of insider threat detection systems. However, with huge sets of heterogeneous data to analyze, applying machine learning techniques effectively and efficiently to such a complex problem is not straightforward. In this paper, we extract a concise set of features from the system logs while trying to prevent loss of meaningful information and providing accurate and actionable intelligence. We investigate two unsupervised anomaly detection algorithms for insider threat detection and draw a comparison between different structures of the system logs including daily dataset and periodically aggregated one. We use the generated anomaly score from the previous cycle as the trust score of each user fed to the next period's model and show its importance and impact in detecting insiders. Furthermore, we consider the psychometric score of users in our model and check its effectiveness in predicting insiders. As far as we know, our model is the first one to take the psychometric score of users into consideration for insider threat detection. Finally, we evaluate our proposed approach on CERT insider threat dataset (v4.2) and show how it outperforms previous approaches.

2020-01-02
Siser, Anton, Maris, Ladislav, Rehák, David, Pellowski, Witalis.  2018.  The Use of Expert Judgement as the Method to Obtain Delay Time Values of Passive Barriers in the Context of the Physical Protection System. 2018 International Carnahan Conference on Security Technology (ICCST). :1–5.

Due to its costly and time-consuming nature and a wide range of passive barrier elements and tools for their breaching, testing the delay time of passive barriers is only possible as an experimental tool to verify expert judgements of said delay times. The article focuses on the possibility of creating and utilizing a new method of acquiring values of delay time for various passive barrier elements using expert judgements which could add to the creation of charts where interactions between the used elements of mechanical barriers and the potential tools for their bypassing would be assigned a temporal value. The article consists of basic description of methods of expert judgements previously applied for making prognoses of socio-economic development and in other societal areas, which are called soft system. In terms of the problem of delay time, this method needed to be modified in such a way that the prospective output would be expressible by a specific quantitative value. To achieve this goal, each stage of the expert judgements was adjusted to the use of suitable scientific methods to select appropriate experts and then to achieve and process the expert data. High emphasis was placed on evaluation of quality and reliability of the expert judgements, which takes into account the specifics of expert selection such as their low numbers, specialization and practical experience.

2019-12-16
Hou, Ming, Li, Dequan, Wu, Xiongjun, Shen, Xiuyu.  2019.  Differential Privacy of Online Distributed Optimization under Adversarial Nodes. 2019 Chinese Control Conference (CCC). :2172-2177.

Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.

2019-11-26
Pulungan, Farid Fajriana, Sudiharto, Dodi Wisaksono, Brotoharsono, Tri.  2018.  Easy Secure Login Implementation Using Pattern Locking and Environmental Context Recognition. 2018 International Conference on Applied Engineering (ICAE). :1-6.

Smartphone has become the tool which is used daily in modern human life. Some activities in human life, according to the usage of the smartphone can be related to the information which has a high privilege and needs a privacy. It causes the owners of the smartphone needs a system which can protect their privacy. Unfortunately, the secure the system, the unease of the usage. Hence, the system which has an invulnerable environment but also gives the ease of use is very needful. The aspect which is related to the ease of use is an authentication mechanism. Sometimes, this aspect correspondence to the effectiveness and the efficiency. This study is going to analyze the application related to this aspect which is a lock screen application. This lock screen application uses the context data based on the environment condition around the user. The context data used are GPS location and Mac Address of Wi-Fi. The system is going to detect the context and is going to determine if the smartphone needs to run the authentication mechanism or to bypass it based on the analysis of the context data. Hopefully, the smartphone application which is developed still can provide mobility and usability features, and also can protect the user privacy even though it is located in the environment which its context data is unknown.

2019-10-28
Blanquer, Ignacio, Meira, Wagner.  2018.  EUBra-BIGSEA, A Cloud-Centric Big Data Scientific Research Platform. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :47–48.
This paper describes the achievements of project EUBra-BIGSEA, which has delivered programming models and data analytics tools for the development of distributed Big Data applications. As framework components, multiple data models are supported (e.g. data streams, multidimensional data, etc.) and efficient mechanisms to ensure privacy and security, on top of a QoS-aware layer for the smart and rapid provisioning of resources in a cloud-based environment.
2019-10-14
Angelini, M., Blasilli, G., Borrello, P., Coppa, E., D’Elia, D. C., Ferracci, S., Lenti, S., Santucci, G..  2018.  ROPMate: Visually Assisting the Creation of ROP-based Exploits. 2018 IEEE Symposium on Visualization for Cyber Security (VizSec). :1–8.

Exploits based on ROP (Return-Oriented Programming) are increasingly present in advanced attack scenarios. Testing systems for ROP-based attacks can be valuable for improving the security and reliability of software. In this paper, we propose ROPMATE, the first Visual Analytics system specifically designed to assist human red team ROP exploit builders. In contrast, previous ROP tools typically require users to inspect a puzzle of hundreds or thousands of lines of textual information, making it a daunting task. ROPMATE presents builders with a clear interface of well-defined and semantically meaningful gadgets, i.e., fragments of code already present in the binary application that can be chained to form fully-functional exploits. The system supports incrementally building exploits by suggesting gadget candidates filtered according to constraints on preserved registers and accessed memory. Several visual aids are offered to identify suitable gadgets and assemble them into semantically correct chains. We report on a preliminary user study that shows how ROPMATE can assist users in building ROP chains.

2019-09-30
Hohlfeld, J., Czoschke, P., Asselin, P., Benakli, M..  2019.  Improving Our Understanding of Measured Jitter (in HAMR). IEEE Transactions on Magnetics. 55:1–11.

The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.

2019-09-23
Yazici, I. M., Karabulut, E., Aktas, M. S..  2018.  A Data Provenance Visualization Approach. 2018 14th International Conference on Semantics, Knowledge and Grids (SKG). :84–91.
Data Provenance has created an emerging requirement for technologies that enable end users to access, evaluate, and act on the provenance of data in recent years. In the era of Big Data, the amount of data created by corporations around the world has grown each year. As an example, both in the Social Media and e-Science domains, data is growing at an unprecedented rate. As the data has grown rapidly, information on the origin and lifecycle of the data has also grown. In turn, this requires technologies that enable the clarification and interpretation of data through the use of data provenance. This study proposes methodologies towards the visualization of W3C-PROV-O Specification compatible provenance data. The visualizations are done by summarization and comparison of the data provenance. We facilitated the testing of these methodologies by providing a prototype, extending an existing open source visualization tool. We discuss the usability of the proposed methodologies with an experimental study; our initial results show that the proposed approach is usable, and its processing overhead is negligible.
Suriarachchi, I., Withana, S., Plale, B..  2018.  Big Provenance Stream Processing for Data Intensive Computations. 2018 IEEE 14th International Conference on e-Science (e-Science). :245–255.
In the business and research landscape of today, data analysis consumes public and proprietary data from numerous sources, and utilizes any one or more of popular data-parallel frameworks such as Hadoop, Spark and Flink. In the Data Lake setting these frameworks co-exist. Our earlier work has shown that data provenance in Data Lakes can aid with both traceability and management. The sheer volume of fine-grained provenance generated in a multi-framework application motivates the need for on-the-fly provenance processing. We introduce a new parallel stream processing algorithm that reduces fine-grained provenance while preserving backward and forward provenance. The algorithm is resilient to provenance events arriving out-of-order. It is evaluated using several strategies for partitioning a provenance stream. The evaluation shows that the parallel algorithm performs well in processing out-of-order provenance streams, with good scalability and accuracy.
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.
2019-08-26
Mavroeidis, V., Vishi, K., Jøsang, A..  2018.  A Framework for Data-Driven Physical Security and Insider Threat Detection. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :1108–1115.

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.

2019-06-24
Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

2019-06-10
Kumar, A., Aggarwal, A., Yadav, D..  2018.  A Multi-layered Outlier Detection Model for Resource Constraint Hierarchical MANET. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–7.

For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.

2019-05-01
Shen, W., Liu, Y., Wu, Q., Tian, Y., Liu, Y., Peng, H..  2018.  Application of Dynamic Security Technology Architecture for Advanced Directional Attacks in Power System Information Security. 2018 International Conference on Power System Technology (POWERCON). :3042–3047.

In view of the increasingly severe network security situation of power information system, this paper draws on the experience of construction of security technology system at home and abroad, with the continuous monitoring and analysis as the core, covering the closed-loop management of defense, detection, response and prediction security as the starting point, Based on the existing defense-based static security protection architecture, a dynamic security technology architecture based on detection and response is established. Compared with the traditional PDR architecture, the architecture adds security threat prediction, strengthens behavior-based detection, and further explains the concept of dynamic defense, so that it can adapt to changes in the grid IT infrastructure and business application systems. A unified security strategy can be formed to deal with more secretive and professional advanced attacks in the future. The architecture emphasizes that network security is a cyclical confrontation process. Enterprise network security thinking should change from the past “emergency response” to “continuous response”, real-time dynamic analysis of security threats, and automatically adapt to changing networks and threat environments, and Constantly optimize its own security defense mechanism, thus effectively solving the problem of the comprehensive technology transformation and upgrading of the security technology system from the traditional passive defense to the active sensing, from the simple defense to the active confrontation, and from the independent protection to the intelligence-driven. At the same time, the paper also gives the technical evolution route of the architecture, which provides a planning basis and a landing method for the continuous fulfillment of the new requirements of the security of the power information system during the 13th Five-Year Plan period.

2019-03-06
Mito, M., Murata, K., Eguchi, D., Mori, Y., Toyonaga, M..  2018.  A Data Reconstruction Method for The Big-Data Analysis. 2018 9th International Conference on Awareness Science and Technology (iCAST). :319-323.
In recent years, the big-data approach has become important within various business operations and sales judgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces of information are extracted from our data and the big-data.