Visible to the public Biblio

Filters: Keyword is nonlinear control systems  [Clear All Filters]
2021-09-09
Kolesnikov, A.A., Kuzmenko, A. A..  2020.  Use of ADAR Method and Theory of Optimal Control for Engineering Systems Optimal Control. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.
This paper compares the known method of Analytical Design of Aggregated Regulators (ADAR) with the method of Analytical Design of Optimal Regulators (ADOR). Both equivalence of these methods and the significant difference in the approaches to the analytical synthesis of control laws are shown. It is shown that the ADAR method has significant advantages associated with a simpler and analytical procedure of design of nonlinear laws for optimal control, clear physical representation of weighting factors of optimality criteria, validity and unambiguity of selecting regulator setting parameters, more simple approach to the analysis of the closed-loop system asymptotic stability. These advantages are illustrated by the examples of synthesis.
2021-01-25
Issa, H., Tar, J. K..  2020.  Tackling Actuator Saturation in Fixed Point Iteration-based Adaptive Control. 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI). :000221–000226.
The limited output of various drives means a challenge in controller design whenever the acceleration need of the "nominal trajectory to be tracked" temporarily exceeds the abilities of the saturated control system. The prevailing control design methods can tackle this problem either in a single theoretical step or in two consecutive steps. In this latter case in the first step the design happens without taking into account the actuator constraints, then apply a saturation compensator if the phenomenon of windup is observed. In the Fixed Point Iteration- based Adaptive Control (FPIAC) that has been developed as an alternative of the Lyapunov function-based approach the actuator saturation causes problems in its both elementary levels: in the kinematic/kinetic level where the desired acceleration is calculated, and in the iterative process that compensates the effects of modeling errors of the dynamic system under control and that of the external disturbances. The here presented approach tackles this problem in both levels by relatively simple considerations. To illustrate the method's efficiency simulation investigations were done in the FPIAC control of a modification of the van der Pol oscillator to which an additional strongly nonlinear term was added.
2020-12-14
Tousi, S. Mohamad Ali, Mostafanasab, A., Teshnehlab, M..  2020.  Design of Self Tuning PID Controller Based on Competitional PSO. 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). :022–026.
In this work, a new particle swarm optimization (PSO)-based optimization algorithm, and the idea of a running match is introduced and employed in a non-linear system PID controller design. This algorithm aims to modify the formula of velocity calculating of the general PSO method to increase the diversity of the searching process. In this process of designing an optimal PID controller for a non-linear system, the three gains of the PID controller form a particle, which is a parameter vector and will be updated iteratively. Many of those particles then form a population. To reach the PID gains which are optimum, using modified velocity updating formula and position updating formula, the position of all particles of the population will be moved into the optimization direction. In the meanwhile, an objective function may be minimized as the performance of the controller get improved. To corroborate the controller functioning of this method, a non-linear system known as inverted pendulum will be controlled by the designed PID controller. The results confirm that the new method can show excellent performance in the non-linear PID controller design task.
2020-10-05
Zamani, Majid, Arcak, Murat.  2018.  Compositional Abstraction for Networks of Control Systems: A Dissipativity Approach. IEEE Transactions on Control of Network Systems. 5:1003—1015.

In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.

Rungger, Matthias, Zamani, Majid.  2018.  Compositional Construction of Approximate Abstractions of Interconnected Control Systems. IEEE Transactions on Control of Network Systems. 5:116—127.

We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.

2020-07-24
Voronkov, Oleg Yu..  2019.  Synergetic Synthesis of the Hierarchical Control System of the “Flying Platform”. 2019 III International Conference on Control in Technical Systems (CTS). :23—26.
The work is devoted to the synthesis of an aircraft control system using a synergetic control theory. The paper contains a general description of the apparatus and its control system, a synthesis of control laws, and a computer simulation. The relevance of the work consists in the need to create a vertically take-off aircraft of the “flying platform” type in order to increase the efficiency of rescue operations in disaster zones where helicopters and other modern means can't cope with the task. The scientific novelty of the work consists in the application of synergetic approaches to the development of a hierarchical system for balancing the vehicle spatial position and to the coordinating energy-saving control of electric motors that receive energy from a turbine generator.
2020-05-08
Su, Yu, Wu, Jing, Long, Chengnian, Li, Shaoyuan.  2018.  Event-triggered Control for Networked Control Systems Under Replay Attacks. 2018 Chinese Automation Congress (CAC). :2636—2641.
With wide application of networked control systems(N CSs), NCSs security have encountered severe challenges. In this paper, we propose a robust event-triggered controller design method under replay attacks, and the control signal on the plant is updated only when the event-triggering condition is satisfied. We develop a general random replay attack model rather than predetermined specific patterns for the occurrences of replay attacks, which allows to obtain random states to replay. We show that the proposed event-triggered control (ETC) scheme, if well designed, can tolerate some consecutive replay attacks, without affecting the corresponding closed-loop system stability and performance. A numerical examples is finally given to illustrate the effectiveness of our method.
2019-12-16
Ferdowsi, Farzad, Barati, Masoud, Edrington, Chris S..  2019.  Real-Time Resiliency Assessment of Control Systems in Microgrids Using the Complexity Metric. 2019 IEEE Green Technologies Conference(GreenTech). :1-5.

This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.

2019-03-06
Man, Y., Ding, L., Xiaoguo, Z..  2018.  Nonlinear System Identification Method Based on Improved Deep Belief Network. 2018 Chinese Automation Congress (CAC). :2379-2383.

Accurate model is very important for the control of nonlinear system. The traditional identification method based on shallow BP network is easy to fall into local optimal solution. In this paper, a modeling method for nonlinear system based on improved Deep Belief Network (DBN) is proposed. Continuous Restricted Boltzmann Machine (CRBM) is used as the first layer of the DBN, so that the network can more effectively deal with the actual data collected from the real systems. Then, the unsupervised training and supervised tuning were combine to improve the accuracy of identification. The simulation results show that the proposed method has a higher identification accuracy. Finally, this improved algorithm is applied to identification of diameter model of silicon single crystal and the simulation results prove its excellent ability of parameters identification.

2019-01-21
Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
2018-09-28
Yang, Y., Wunsch, D., Yin, Y..  2017.  Hamiltonian-driven adaptive dynamic programming for nonlinear discrete-time dynamic systems. 2017 International Joint Conference on Neural Networks (IJCNN). :1339–1346.

In this paper, based on the Hamiltonian, an alternative interpretation about the iterative adaptive dynamic programming (ADP) approach from the perspective of optimization is developed for discrete time nonlinear dynamic systems. The role of the Hamiltonian in iterative ADP is explained. The resulting Hamiltonian driven ADP is able to evaluate the performance with respect to arbitrary admissible policies, compare two different admissible policies and further improve the given admissible policy. The convergence of the Hamiltonian ADP to the optimal policy is proven. Implementation of the Hamiltonian-driven ADP by neural networks is discussed based on the assumption that each iterative policy and value function can be updated exactly. Finally, a simulation is conducted to verify the effectiveness of the presented Hamiltonian-driven ADP.

2018-02-21
Borah, M., Roy, B. K..  2017.  Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronisation control. 2017 Indian Control Conference (ICC). :450–455.

This paper presents a new fractional-order hidden strange attractor generated by a chaotic system without equilibria. The proposed non-equilibrium fractional-order chaotic system (FOCS) is asymmetric, dissimilar, topologically inequivalent to typical chaotic systems and challenges the conventional notion that the presence of unstable equilibria is mandatory to ensure the existence of chaos. The new fractional-order model displays rich bifurcation undergoing a period doubling route to chaos, where the fractional order α is the bifurcation parameter. Study of the hidden attractor dynamics is carried out with the aid of phase portraits, sensitivity to initial conditions, fractal Lyapunov dimension, maximum Lyapunov exponents spectrum and bifurcation analysis. The minimum commensurate dimension to display chaos is determined. With a view to utilizing it in chaos based cryptology and coding information, a synchronisation control scheme is designed. Finally the theoretical analyses are validated by numerical simulation results which are in good agreement with the former.

2018-02-15
Ding, Q., Peng, X., Zhang, X., Hu, X., Zhong, X..  2017.  Adaptive observer-based fault diagnosis for sensor in a class of MIMO nonlinear system. 2017 36th Chinese Control Conference (CCC). :7051–7058.

This paper presents a novel sensor parameter fault diagnosis method for generally multiple-input multiple-output (MIMO) affine nonlinear systems based on adaptive observer. Firstly, the affine nonlinear systems are transformed into the particular systems via diffeomorphic transformation using Lie derivative. Then, based on the techniques of high-gain observer and adaptive estimation, an adaptive observer structure is designed with simple method for jointly estimating the states and the unknown parameters in the output equation of the nonlinear systems. And an algorithm of the fault estimation is derived. The global exponential convergence of the proposed observer is proved succinctly. Also the proposed method can be applied to the fault diagnosis of generally affine nonlinear systems directly by the reversibility of aforementioned coordinate transformation. Finally, a numerical example is presented to illustrate the efficiency of the proposed fault diagnosis scheme.

2017-12-27
Tutueva, A. V., Butusov, D. N., Pesterev, D. O., Belkin, D. A., Ryzhov, N. G..  2017.  Novel normalization technique for chaotic Pseudo-random number generators based on semi-implicit ODE solvers. 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :292–295.

The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.

2017-12-20
Rebaï, S. Bezzaoucha, Voos, H., Darouach, M..  2017.  A contribution to cyber-security of networked control systems: An event-based control approach. 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). :1–7.
In the present paper, a networked control system under both cyber and physical attacks Is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system.
2017-03-08
Prabhakar, A., Flaßkamp, K., Murphey, T. D..  2015.  Symplectic integration for optimal ergodic control. 2015 54th IEEE Conference on Decision and Control (CDC). :2594–2600.

Autonomous active exploration requires search algorithms that can effectively balance the need for workspace coverage with energetic costs. We present a strategy for planning optimal search trajectories with respect to the distribution of expected information over a workspace. We formulate an iterative optimal control algorithm for general nonlinear dynamics, where the metric for information gain is the difference between the spatial distribution and the statistical representation of the time-averaged trajectory, i.e. ergodicity. Previous work has designed a continuous-time trajectory optimization algorithm. In this paper, we derive two discrete-time iterative trajectory optimization approaches, one based on standard first-order discretization and the other using symplectic integration. The discrete-time methods based on first-order discretization techniques are both faster than the continuous-time method in the studied examples. Moreover, we show that even for a simple system, the choice of discretization has a dramatic impact on the resulting control and state trajectories. While the standard discretization method turns unstable, the symplectic method, which is structure-preserving, achieves lower values for the objective.

Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.