Visible to the public Biblio

Filters: Keyword is stereo image processing  [Clear All Filters]
2021-07-02
Yao, Xiaoyong, Pei, Yuwen, Wu, Pingdong, Huang, Man-ling.  2020.  Study on Integrative Control between the Stereoscopic Image and the Tactile Feedback in Augmented Reality. 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE). :177—180.
The precise integrative control between the stereoscopic image and the tactile feedback is very essential in augmented reality[1]-[4]. In order to study this question, this paper will introduce a stereoscopic-imaging and tactile integrative augmented-reality system, and a stereoscopic-imaging and tactile integrative algorithm. The system includes a stereoscopic-imaging part and a string-based tactile part. The integrative algorithm is used to precisely control the interaction between the two parts. The results for testing the system and the algorithm demonstrate the system to be perfect through 5 testers' operation and will be presented in the last part of the paper.
2021-03-09
Bronzin, T., Prole, B., Stipić, A., Pap, K..  2020.  Individualization of Anonymous Identities Using Artificial Intelligence (AI). 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1058–1063.

Individualization of anonymous identities using artificial intelligence - enables innovative human-computer interaction through the personalization of communication which is, at the same time, individual and anonymous. This paper presents possible approach for individualization of anonymous identities in real time. It uses computer vision and artificial intelligence to automatically detect and recognize person's age group, gender, human body measures, proportions and other specific personal characteristics. Collected data constitutes the so-called person's biometric footprint and are linked to a unique (but still anonymous) identity that is recorded in the computer system, along with other information that make up the profile of the person. Identity anonymization can be achieved by appropriate asymmetric encryption of the biometric footprint (with no additional personal information being stored) and integrity can be ensured using blockchain technology. Data collected in this manner is GDPR compliant.

2021-02-08
Moussa, Y., Alexan, W..  2020.  Message Security Through AES and LSB Embedding in Edge Detected Pixels of 3D Images. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :224—229.

This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.

2021-02-03
Illing, B., Westhoven, M., Gaspers, B., Smets, N., Brüggemann, B., Mathew, T..  2020.  Evaluation of Immersive Teleoperation Systems using Standardized Tasks and Measurements. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :278—285.

Despite advances regarding autonomous functionality for robots, teleoperation remains a means for performing delicate tasks in safety critical contexts like explosive ordnance disposal (EOD) and ambiguous environments. Immersive stereoscopic displays have been proposed and developed in this regard, but bring about their own specific problems, e.g., simulator sickness. This work builds upon standardized test environments to yield reproducible comparisons between different robotic platforms. The focus was placed on testing three optronic systems of differing degrees of immersion: (1) A laptop display showing multiple monoscopic camera views, (2) an off-the-shelf virtual reality headset coupled with a pantilt-based stereoscopic camera, and (3) a so-called Telepresence Unit, providing fast pan, tilt, yaw rotation, stereoscopic view, and spatial audio. Stereoscopic systems yielded significant faster task completion only for the maneuvering task. As expected, they also induced Simulator Sickness among other results. However, the amount of Simulator Sickness varied between both stereoscopic systems. Collected data suggests that a higher degree of immersion combined with careful system design can reduce the to-be-expected increase of Simulator Sickness compared to the monoscopic camera baseline while making the interface subjectively more effective for certain tasks.

2021-01-15
Yang, X., Li, Y., Lyu, S..  2019.  Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8261—8265.
In this paper, we propose a new method to expose AI-generated fake face images or videos (commonly known as the Deep Fakes). Our method is based on the observations that Deep Fakes are created by splicing synthesized face region into the original image, and in doing so, introducing errors that can be revealed when 3D head poses are estimated from the face images. We perform experiments to demonstrate this phenomenon and further develop a classification method based on this cue. Using features based on this cue, an SVM classifier is evaluated using a set of real face images and Deep Fakes.
2020-12-11
Friedrich, T., Menzel, S..  2019.  Standardization of Gram Matrix for Improved 3D Neural Style Transfer. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1375—1382.

Neural Style Transfer based on convolutional neural networks has produced visually appealing results for image and video data in the recent years where e.g. the content of a photo and the style of a painting are merged to a novel piece of digital art. In practical engineering development, we utilize 3D objects as standard for optimizing digital shapes. Since these objects can be represented as binary 3D voxel representation, we propose to extend the Neural Style Transfer method to 3D geometries in analogy to 2D pixel representations. In a series of experiments, we first evaluate traditional Neural Style Transfer on 2D binary monochromatic images. We show that this method produces reasonable results on binary images lacking color information and even improve them by introducing a standardized Gram matrix based loss function for style. For an application of Neural Style Transfer on 3D voxel primitives, we trained several classifier networks demonstrating the importance of a meaningful convolutional network architecture. The standardization of the Gram matrix again strongly contributes to visually improved, less noisy results. We conclude that Neural Style Transfer extended by a standardization of the Gram matrix is a promising approach for generating novel 3D voxelized objects and expect future improvements with increasing graphics memory availability for finer object resolutions.

2020-06-12
Wang, Min, Li, Haoyang, Shuang, Ya, Li, Lianlin.  2019.  High-resolution Three-dimensional Microwave Imaging Using a Generative Adversarial Network. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). 1:1—3.

To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.

2018-05-01
Li, Z., Beugnon, S., Puech, W., Bors, A. G..  2017.  Rethinking the High Capacity 3D Steganography: Increasing Its Resistance to Steganalysis. 2017 IEEE International Conference on Image Processing (ICIP). :510–414.

3D steganography is used in order to embed or hide information into 3D objects without causing visible or machine detectable modifications. In this paper we rethink about a high capacity 3D steganography based on the Hamiltonian path quantization, and increase its resistance to steganalysis. We analyze the parameters that may influence the distortion of a 3D shape as well as the resistance of the steganography to 3D steganalysis. According to the experimental results, the proposed high capacity 3D steganographic method has an increased resistance to steganalysis.

2018-01-10
Hosseini, S., Swash, M. R., Sadka, A..  2017.  Immersive 360 Holoscopic 3D system design. 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN). :325–329.
3D imaging has been a hot research topic recently due to a high demand from various applications of security, health, autonomous vehicle and robotics. Yet Stereoscopic 3D imaging is limited due to its principles which mimics the human eye technique thus the camera separation baseline defines amount of 3D depth can be captured. Holoscopic 3D (H3D) Imaging is based on the “Fly's eye” technique that uses coherent replication of light to record a spatial image of a real scene using a microlens array (MLA) which gives the complete 3D parallax. H3D Imaging has been considered a promising 3D imaging technique which pursues the simple form of 3D acquisition using a single aperture camera therefore it is the most suited for scalable digitization, security and autonomous applications. This paper proposes 360-degree holoscopic 3D imaging system design for immersive 3D acquisition and stitching.
2017-03-08
Ridel, D. A., Shinzato, P. Y., Wolf, D. F..  2015.  A Clustering-Based Obstacle Segmentation Approach for Urban Environments. 2015 12th Latin American Robotic Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR). :265–270.

The detection of obstacles is a fundamental issue in autonomous navigation, as it is the main key for collision prevention. This paper presents a method for the segmentation of general obstacles by stereo vision with no need of dense disparity maps or assumptions about the scenario. A sparse set of points is selected according to a local spatial condition and then clustered in function of its neighborhood, disparity values and a cost associated with the possibility of each point being part of an obstacle. The method was evaluated in hand-labeled images from KITTI object detection benchmark and the precision and recall metrics were calculated. The quantitative and qualitative results showed satisfactory in scenarios with different types of objects.

Honauer, K., Maier-Hein, L., Kondermann, D..  2015.  The HCI Stereo Metrics: Geometry-Aware Performance Analysis of Stereo Algorithms. 2015 IEEE International Conference on Computer Vision (ICCV). :2120–2128.

Performance characterization of stereo methods is mandatory to decide which algorithm is useful for which application. Prevalent benchmarks mainly use the root mean squared error (RMS) with respect to ground truth disparity maps to quantify algorithm performance. We show that the RMS is of limited expressiveness for algorithm selection and introduce the HCI Stereo Metrics. These metrics assess stereo results by harnessing three semantic cues: depth discontinuities, planar surfaces, and fine geometric structures. For each cue, we extract the relevant set of pixels from existing ground truth. We then apply our evaluation functions to quantify characteristics such as edge fattening and surface smoothness. We demonstrate that our approach supports practitioners in selecting the most suitable algorithm for their application. Using the new Middlebury dataset, we show that rankings based on our metrics reveal specific algorithm strengths and weaknesses which are not quantified by existing metrics. We finally show how stacked bar charts and radar charts visually support multidimensional performance evaluation. An interactive stereo benchmark based on the proposed metrics and visualizations is available at: http://hci.iwr.uni-heidelberg.de/stereometrics.