Visible to the public Biblio

Found 421 results

Filters: Keyword is Sensors  [Clear All Filters]
2017-05-16
Mirzamohammadi, Saeed, Amiri Sani, Ardalan.  2016.  Viola: Trustworthy Sensor Notifications for Enhanced Privacy on Mobile Systems. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. :263–276.

Modern mobile systems such as smartphones, tablets, and wearables contain a plethora of sensors such as camera, microphone, GPS, and accelerometer. Moreover, being mobile, these systems are with the user all the time, e.g., in user's purse or pocket. Therefore, mobile sensors can capture extremely sensitive and private information about the user including daily conversations, photos, videos, and visited locations. Such a powerful sensing capability raises important privacy concerns. To address these concerns, we believe that mobile systems must be equipped with trustworthy sensor notifications, which use indicators such as LED to inform the user unconditionally when the sensors are on. We present Viola, our design and implementation of trustworthy sensor notifications, in which we leverage two novel solutions. First, we deploy a runtime monitor in low-level system software, e.g., in the operating system kernel or in the hypervisor. The monitor intercepts writes to the registers of sensors and indicators, evaluates them against checks on sensor notification invariants, and rejects those that fail the checks. Second, we use formal verification methods to prove the functional correctness of the compilation of our invariant checks from a high-level language. We demonstrate the effectiveness of Viola on different mobile systems, such as Nexus 5, Galaxy Nexus, and ODROID XU4, and for various sensors and indicators, such as camera, microphone, LED, and vibrator. We demonstrate that Viola incurs almost no overhead to the sensor's performance and incurs only small power consumption overhead.

2017-04-20
Gupta, K., Shukla, S..  2016.  Internet of Things: Security challenges for next generation networks. 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). :315–318.

Internet of Things(IoT) is the next big boom in the networking field. The vision of IoT is to connect daily used objects (which have the ability of sensing and actuation) to the Internet. This may or may or may not involve human. IoT field is still maturing and has many open issues. We build up on the security issues. As the devices have low computational power and low memory the existing security mechanisms (which are a necessity) should also be optimized accordingly or a clean slate approach needs to be followed. This is a survey paper to focus on the security aspects of IoT. We further also discuss the open challenges in this field.

2017-03-08
Leong, F. H..  2015.  Automatic detection of frustration of novice programmers from contextual and keystroke logs. 2015 10th International Conference on Computer Science Education (ICCSE). :373–377.

Novice programmers exhibit a repertoire of affective states over time when they are learning computer programming. The modeling of frustration is important as it informs on the need for pedagogical intervention of the student who may otherwise lose confidence and interest in the learning. In this paper, contextual and keystroke features of the students within a Java tutoring system are used to detect frustration of student within a programming exercise session. As compared to psychological sensors used in other studies, the use of contextual and keystroke logs are less obtrusive and the equipment used (keyboard) is ubiquitous in most learning environment. The technique of logistic regression with lasso regularization is utilized for the modeling to prevent over-fitting. The results showed that a model that uses only contextual and keystroke features achieved a prediction accuracy level of 0.67 and a recall measure of 0.833. Thus, we conclude that it is possible to detect frustration of a student from distilling both the contextual and keystroke logs within the tutoring system with an adequate level of accuracy.

Sarkisyan, A., Debbiny, R., Nahapetian, A..  2015.  WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. 2015 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.

Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.

Alotaibi, S., Furnell, S., Clarke, N..  2015.  Transparent authentication systems for mobile device security: A review. 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). :406–413.

Sensitive data such as text messages, contact lists, and personal information are stored on mobile devices. This makes authentication of paramount importance. More security is needed on mobile devices since, after point-of-entry authentication, the user can perform almost all tasks without having to re-authenticate. For this reason, many authentication methods have been suggested to improve the security of mobile devices in a transparent and continuous manner, providing a basis for convenient and secure user re-authentication. This paper presents a comprehensive analysis and literature review on transparent authentication systems for mobile device security. This review indicates a need to investigate when to authenticate the mobile user by focusing on the sensitivity level of the application, and understanding whether a certain application may require a protection or not.

Cao, B., Wang, Z., Shi, H., Yin, Y..  2015.  Research and practice on Aluminum Industry 4.0. 2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP). :517–521.

This paper presents a six-layer Aluminum Industry 4.0 architecture for the aluminum production and full lifecycle supply chain management. It integrates a series of innovative technologies, including the IoT sensing physical system, industrial cloud platform for data management, model-driven and big data driven analysis & decision making, standardization & securitization intelligent control and management, as well as visual monitoring and backtracking process etc. The main relevant control models are studied. The applications of real-time accurate perception & intelligent decision technology in the aluminum electrolytic industry are introduced.

Singh, S., Singh, N..  2015.  Internet of Things (IoT): Security challenges, business opportunities reference architecture for E-commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1577–1581.

The Internet of Things (IoT) represents a diverse technology and usage with unprecedented business opportunities and risks. The Internet of Things is changing the dynamics of security industry & reshaping it. It allows data to be transferred seamlessly among physical devices to the Internet. The growth of number of intelligent devices will create a network rich with information that allows supply chains to assemble and communicate in new ways. The technology research firm Gartner predicts that there will be 26 billion installed units on the Internet of Things (IoT) by 2020[1]. This paper explains the concept of Internet of Things (IoT), its characteristics, explain security challenges, technology adoption trends & suggests a reference architecture for E-commerce enterprise.

Mukherjee, M., Edwards, J., Kwon, H., Porta, T. F. L..  2015.  Quality of information-aware real-time traffic flow analysis and reporting. 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops). :69–74.

In this paper we present a framework for Quality of Information (QoI)-aware networking. QoI quantifies how useful a piece of information is for a given query or application. Herein, we present a general QoI model, as well as a specific example instantiation that carries throughout the rest of the paper. In this model, we focus on the tradeoffs between precision and accuracy. As a motivating example, we look at traffic video analysis. We present simple algorithms for deriving various traffic metrics from video, such as vehicle count and average speed. We implement these algorithms both on a desktop workstation and less-capable mobile device. We then show how QoI-awareness enables end devices to make intelligent decisions about how to process queries and form responses, such that huge bandwidth savings are realized.

Ridel, D. A., Shinzato, P. Y., Wolf, D. F..  2015.  A Clustering-Based Obstacle Segmentation Approach for Urban Environments. 2015 12th Latin American Robotic Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR). :265–270.

The detection of obstacles is a fundamental issue in autonomous navigation, as it is the main key for collision prevention. This paper presents a method for the segmentation of general obstacles by stereo vision with no need of dense disparity maps or assumptions about the scenario. A sparse set of points is selected according to a local spatial condition and then clustered in function of its neighborhood, disparity values and a cost associated with the possibility of each point being part of an obstacle. The method was evaluated in hand-labeled images from KITTI object detection benchmark and the precision and recall metrics were calculated. The quantitative and qualitative results showed satisfactory in scenarios with different types of objects.

2017-03-07
Kim, J., Moon, I., Lee, K., Suh, S. C., Kim, I..  2015.  Scalable Security Event Aggregation for Situation Analysis. 2015 IEEE First International Conference on Big Data Computing Service and Applications. :14–23.

Cyber-attacks have been evolved in a way to be more sophisticated by employing combinations of attack methodologies with greater impacts. For instance, Advanced Persistent Threats (APTs) employ a set of stealthy hacking processes running over a long period of time, making it much hard to detect. With this trend, the importance of big-data security analytics has taken greater attention since identifying such latest attacks requires large-scale data processing and analysis. In this paper, we present SEAS-MR (Security Event Aggregation System over MapReduce) that facilitates scalable security event aggregation for comprehensive situation analysis. The introduced system provides the following three core functions: (i) periodic aggregation, (ii) on-demand aggregation, and (iii) query support for effective analysis. We describe our design and implementation of the system over MapReduce and high-level query languages, and report our experimental results collected through extensive settings on a Hadoop cluster for performance evaluation and design impacts.

Puttonen, J., Afolaranmi, S. O., Moctezuma, L. G., Lobov, A., Lastra, J. L. M..  2015.  Security in Cloud-Based Cyber-Physical Systems. 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). :671–676.

Cyber-physical systems combine data processing and physical interaction. Therefore, security in cyber-physical systems involves more than traditional information security. This paper surveys recent research on security in cloud-based cyber-physical systems. In addition, this paper especially analyzes the security issues in modern production devices and smart mobility services, which are examples of cyber-physical systems from different application domains.

2017-02-27
Sun, H., Luo, H., Wu, T. Y., Obaidat, M. S..  2015.  A PSNR-Controllable Data Hiding Algorithm Based on LSBs Substitution. 2015 IEEE Global Communications Conference (GLOBECOM). :1–7.

There are more and more systems using mobile devices to perform sensing tasks, but these increase the risk of leakage of personal privacy and data. Data hiding is one of the important ways for information security. Even though many data hiding algorithms have worked on providing more hiding capacity or higher PSNR, there are few algorithms that can control PSNR effectively while ensuring hiding capacity. In this paper, with controllable PSNR based on LSBs substitution- PSNR-Controllable Data Hiding (PCDH), we first propose a novel encoding plan for data hiding. In PCDH, we use the remainder algorithm to calculate the hidden information, and hide the secret information in the last x LSBs of every pixel. Theoretical proof shows that this method can control the variation of stego image from cover image, and control PSNR by adjusting parameters in the remainder calculation. Then, we design the encoding and decoding algorithms with low computation complexity. Experimental results show that PCDH can control the PSNR in a given range while ensuring high hiding capacity. In addition, it can resist well some steganalysis. Compared to other algorithms, PCDH achieves better tradeoff among PSNR, hiding capacity, and computation complexity.

2017-02-21
H. Kiragu, G. Kamucha, E. Mwangi.  2015.  "A fast procedure for acquisition and reconstruction of magnetic resonance images using compressive sampling". AFRICON 2015. :1-5.

This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.

R. Lee, L. Mullen, P. Pal, D. Illig.  2015.  "Time of flight measurements for optically illuminated underwater targets using Compressive Sampling and Sparse reconstruction". OCEANS 2015 - MTS/IEEE Washington. :1-6.

Compressive Sampling and Sparse reconstruction theory is applied to a linearly frequency modulated continuous wave hybrid lidar/radar system. The goal is to show that high resolution time of flight measurements to underwater targets can be obtained utilizing far fewer samples than dictated by Nyquist sampling theorems. Traditional mixing/down-conversion and matched filter signal processing methods are reviewed and compared to the Compressive Sampling and Sparse Reconstruction methods. Simulated evidence is provided to show the possible sampling rate reductions, and experiments are used to observe the effects that turbid underwater environments have on recovery. Results show that by using compressive sensing theory and sparse reconstruction, it is possible to achieve significant sample rate reduction while maintaining centimeter range resolution.

S. R. Islam, S. P. Maity, A. K. Ray.  2015.  "On compressed sensing image reconstruction using linear prediction in adaptive filtering". 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2317-2323.

Compressed sensing (CS) or compressive sampling deals with reconstruction of signals from limited observations/ measurements far below the Nyquist rate requirement. This is essential in many practical imaging system as sampling at Nyquist rate may not always be possible due to limited storage facility, slow sampling rate or the measurements are extremely expensive e.g. magnetic resonance imaging (MRI). Mathematically, CS addresses the problem for finding out the root of an unknown distribution comprises of unknown as well as known observations. Robbins-Monro (RM) stochastic approximation, a non-parametric approach, is explored here as a solution to CS reconstruction problem. A distance based linear prediction using the observed measurements is done to obtain the unobserved samples followed by random noise addition to act as residual (prediction error). A spatial domain adaptive Wiener filter is then used to diminish the noise and to reveal the new features from the degraded observations. Extensive simulation results highlight the relative performance gain over the existing work.

A. Bekan, M. Mohorcic, J. Cinkelj, C. Fortuna.  2015.  "An Architecture for Fully Reconfigurable Plug-and-Play Wireless Sensor Network Testbed". 2015 IEEE Global Communications Conference (GLOBECOM). :1-7.

In this paper we propose an architecture for fully-reconfigurable, plug-and-play wireless sensor network testbed. The proposed architecture is able to reconfigure and support easy experimentation and testing of standard protocol stacks (i.e. uIPv4 and uIPv6) as well as non-standardized clean-slate protocol stacks (e.g. configured using RIME). The parameters of the protocol stacks can be remotely reconfigured through an easy to use RESTful API. Additionally, we are able to fully reconfigure clean-slate protocol stacks at run-time. The architecture enables easy set-up of the network - plug - by using a protocol that automatically sets up a multi-hop network (i.e. RPL protocol) and it enables reconfiguration and experimentation - play - by using a simple, RESTful interaction with each node individually. The reference implementation of the architecture uses a dual-stack Contiki OS with the ProtoStack tool for dynamic composition of services.

2017-02-14
J. Kim, I. Moon, K. Lee, S. C. Suh, I. Kim.  2015.  "Scalable Security Event Aggregation for Situation Analysis". 2015 IEEE First International Conference on Big Data Computing Service and Applications. :14-23.

Cyber-attacks have been evolved in a way to be more sophisticated by employing combinations of attack methodologies with greater impacts. For instance, Advanced Persistent Threats (APTs) employ a set of stealthy hacking processes running over a long period of time, making it much hard to detect. With this trend, the importance of big-data security analytics has taken greater attention since identifying such latest attacks requires large-scale data processing and analysis. In this paper, we present SEAS-MR (Security Event Aggregation System over MapReduce) that facilitates scalable security event aggregation for comprehensive situation analysis. The introduced system provides the following three core functions: (i) periodic aggregation, (ii) on-demand aggregation, and (iii) query support for effective analysis. We describe our design and implementation of the system over MapReduce and high-level query languages, and report our experimental results collected through extensive settings on a Hadoop cluster for performance evaluation and design impacts.

2015-05-06
Young Sil Lee, Alasaarela, E., Hoonjae Lee.  2014.  Secure key management scheme based on ECC algorithm for patient's medical information in healthcare system. Information Networking (ICOIN), 2014 International Conference on. :453-457.

Recent advances in Wireless Sensor Networks have given rise to many application areas in healthcare such as the new field of Wireless Body Area Networks. The health status of humans can be tracked and monitored using wearable and non-wearable sensor devices. Security in WBAN is very important to guarantee and protect the patient's personal sensitive data and establishing secure communications between BAN sensors and external users is key to addressing prevalent security and privacy concerns. In this paper, we propose secure and efficient key management scheme based on ECC algorithm to protect patient's medical information in healthcare system. Our scheme divided into three phases as setup, registration, verification and key exchange. And we use the identification code which is the SIM card number on a patient's smart phone with the private key generated by the legal use instead of the third party. Also to prevent the replay attack, we use counter number at every process of authenticated message exchange to resist.

Abdallah, W., Boudriga, N., Daehee Kim, Sunshin An.  2014.  An efficient and scalable key management mechanism for wireless sensor networks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :687-692.

A major issue to secure wireless sensor networks is key distribution. Current key distribution schemes are not fully adapted to the tiny, low-cost, and fragile sensors with limited computation capability, reduced memory size, and battery-based power supply. This paper investigates the design of an efficient key distribution and management scheme for wireless sensor networks. The proposed scheme can ensure the generation and distribution of different encryption keys intended to secure individual and group communications. This is performed based on elliptic curve public key encryption using Diffie-Hellman like key exchange and secret sharing techniques that are applied at different levels of the network topology. This scheme is more efficient and less complex than existing approaches, due to the reduced communication and processing overheads required to accomplish key exchange. Furthermore, few keys with reduced sizes are managed in sensor nodes which optimizes memory usage, and enhances scalability to large size networks.

Friese, I., Heuer, J., Ning Kong.  2014.  Challenges from the Identities of Things: Introduction of the Identities of Things discussion group within Kantara initiative. Internet of Things (WF-IoT), 2014 IEEE World Forum on. :1-4.

The Internet of Things (IoT) becomes reality. But its restrictions become obvious as we try to connect solutions of different vendors and communities. Apart from communication protocols appropriate identity management mechanisms are crucial for a growing IoT. The recently founded Identities of Things Discussion Group within Kantara Initiative will work on open issues and solutions to manage “Identities of Things” as an enabler for a fast-growing ecosystem.

Djouadi, S.M., Melin, A.M., Ferragut, E.M., Laska, J.A., Jin Dong.  2014.  Finite energy and bounded attacks on control system sensor signals. American Control Conference (ACC), 2014. :1716-1722.

Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.

Fachkha, C., Bou-Harb, E., Debbabi, M..  2014.  Fingerprinting Internet DNS Amplification DDoS Activities. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
 

Leong, P., Liming Lu.  2014.  Multiagent Web for the Internet of Things. Information Science and Applications (ICISA), 2014 International Conference on. :1-4.

The Internet of Things (IOT) is a network of networks where massively large numbers of objects or things are interconnected to each other through the network. The Internet of Things brings along many new possibilities of applications to improve human comfort and quality of life. Complex systems such as the Internet of Things are difficult to manage because of the emergent behaviours that arise from the complex interactions between its constituent parts. Our key contribution in the paper is a proposed multiagent web for the Internet of Things. Corresponding data management architecture is also proposed. The multiagent architecture provides autonomic characteristics for IOT making the IOT manageable. In addition, the multiagent web allows for flexible processing on heterogeneous platforms as we leverage off web protocols such as HTTP and language independent data formats such as JSON for communications between agents. The architecture we proposed enables a scalable architecture and infrastructure for a web-scale multiagent Internet of Things.
 

2015-05-05
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.

Toshiro Yano, E., Bhatt, P., Gustavsson, P.M., Ahlfeldt, R.-M..  2014.  Towards a Methodology for Cybersecurity Risk Management Using Agents Paradigm. Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint. :325-325.

In order to deal with shortcomings of security management systems, this work proposes a methodology based on agents paradigm for cybersecurity risk management. In this approach a system is decomposed in agents that may be used to attain goals established by attackers. Threats to business are achieved by attacker's goals in service and deployment agents. To support a proactive behavior, sensors linked to security mechanisms are analyzed accordingly with a model for Situational Awareness(SA)[4].