Visible to the public Biblio

Found 256 results

Filters: Keyword is Complexity theory  [Clear All Filters]
2018-06-11
Maines, C. L., Zhou, B., Tang, S., Shi, Q..  2017.  Towards a Framework for the Extension and Visualisation of Cyber Security Requirements in Modelling Languages. 2017 10th International Conference on Developments in eSystems Engineering (DeSE). :71–76.
Every so often papers are published presenting a new extension for modelling cyber security requirements in Business Process Model and Notation (BPMN). The frequent production of new extensions by experts belies the need for a richer and more usable representation of security requirements in BPMN processes. In this paper, we present our work considering an analysis of existing extensions and identify the notational issues present within each of them. We discuss how there is yet no single extension which represents a comprehensive range of cyber security concepts. Consequently, there is no adequate solution for accurately specifying cyber security requirements within BPMN. In order to address this, we propose a new framework that can be used to extend, visualise and verify cyber security requirements in not only BPMN, but any other existing modelling language. The framework comprises of the three core roles necessary for the successful development of a security extension. With each of these being further subdivided into the respective components each role must complete.
2018-05-24
Chadha, R., Sistla, A. P., Viswanathan, M..  2017.  Verification of Randomized Security Protocols. 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–12.

We consider the problem of verifying the security of finitely many sessions of a protocol that tosses coins in addition to standard cryptographic primitives against a Dolev-Yao adversary. Two properties are investigated here - secrecy, which asks if no adversary interacting with a protocol P can determine a secret sec with probability textgreater 1 - p; and indistinguishability, which asks if the probability observing any sequence 0$øverline$ in P1 is the same as that of observing 0$øverline$ in P2, under the same adversary. Both secrecy and indistinguishability are known to be coNP-complete for non-randomized protocols. In contrast, we show that, for randomized protocols, secrecy and indistinguishability are both decidable in coNEXPTIME. We also prove a matching lower bound for the secrecy problem by reducing the non-satisfiability problem of monadic first order logic without equality.

2018-05-02
Menezes, B. A. M., Wrede, F., Kuchen, H., Neto, F. B. de Lima.  2017.  Parameter selection for swarm intelligence algorithms \#x2014; Case study on parallel implementation of FSS. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

Swarm Intelligence (SI) algorithms, such as Fish School Search (FSS), are well known as useful tools that can be used to achieve a good solution in a reasonable amount of time for complex optimization problems. And when problems increase in size and complexity, some increase in population size or number of iterations might be needed in order to achieve a good solution. In extreme cases, the execution time can be huge and other approaches, such as parallel implementations, might help to reduce it. This paper investigates the relation and trade off involving these three aspects in SI algorithms, namely population size, number of iterations, and problem complexity. The results with a parallel implementations of FSS show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior of the results, i.e. increasing the population over a certain threshold only leads to slight improvements.

2018-04-11
Li, Jason, O'Donnell, Ryan.  2017.  Bounding Laconic Proof Systems by Solving CSPs in Parallel. Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures. :95–100.

We show that the basic semidefinite programming relaxation value of any constraint satisfaction problem can be computed in NC; that is, in parallel polylogarithmic time and polynomial work. As a complexity-theoretic consequence we get that $\backslash$MIPone[k,c,s] $\backslash$subseteq $\backslash$PSPACE provided s/c $\backslash$leq (.62-o(1))k/2textasciicircumk, resolving a question of Austrin, H$\backslash$aa stad, and Pass. Here $\backslash$MIPone[k,c,s] is the class of languages decidable with completeness c and soundness s by an interactive proof system with k provers, each constrained to communicate just 1 bit.

2018-04-04
Velásquez, E. P., Correa, J. C..  2017.  Methodology (N2FMEA) for the detection of risks associated with the components of an underwater system. OCEANS 2017 - Anchorage. :1–4.

This paper combines FMEA and n2 approaches in order to create a methodology to determine risks associated with the components of an underwater system. This methodology is based on defining the risk level related to each one of the components and interfaces that belong to a complex underwater system. As far as the authors know, this approach has not been reported before. The resulting information from the mentioned procedures is combined to find the system's critical elements and interfaces that are most affected by each failure mode. Finally, a calculation is performed to determine the severity level of each failure mode based on the system's critical elements.

2018-04-02
Alharam, A. K., El-madany, W..  2017.  Complexity of Cyber Security Architecture for IoT Healthcare Industry: A Comparative Study. 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). :246–250.

In recent years a wide range of wearable IoT healthcare applications have been developed and deployed. The rapid increase in wearable devices allows the transfer of patient personal information between different devices, at the same time personal health and wellness information of patients can be tracked and attacked. There are many techniques that are used for protecting patient information in medical and wearable devices. In this research a comparative study of the complexity for cyber security architecture and its application in IoT healthcare industry has been carried out. The objective of the study is for protecting healthcare industry from cyber attacks focusing on IoT based healthcare devices. The design has been implemented on Xilinx Zynq-7000, targeting XC7Z030 - 3fbg676 FPGA device.

Cheng, Q., Kwiat, K., Kamhoua, C. A., Njilla, L..  2017.  Attack Graph Based Network Risk Assessment: Exact Inference vs Region-Based Approximation. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). :84–87.

Quantitative risk assessment is a critical first step in risk management and assured design of networked computer systems. It is challenging to evaluate the marginal probabilities of target states/conditions when using a probabilistic attack graph to represent all possible attack paths and the probabilistic cause-consequence relations among nodes. The brute force approach has the exponential complexity and the belief propagation method gives approximation when the corresponding factor graph has cycles. To improve the approximation accuracy, a region-based method is adopted, which clusters some highly dependent nodes into regions and messages are passed among regions. Experiments are conducted to compare the performance of the different methods.

Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2017.  A Novel Approach for Analysis of Attack Graph. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :7–12.

Attack graph technique is a common tool for the evaluation of network security. However, attack graphs are generally too large and complex to be understood and interpreted by security administrators. This paper proposes an analysis framework for security attack graphs for a given IT infrastructure system. First, in order to facilitate the discovery of interconnectivities among vulnerabilities in a network, multi-host multi-stage vulnerability analysis (MulVAL) is employed to generate an attack graph for a given network topology. Then a novel algorithm is applied to refine the attack graph and generate a simplified graph called a transition graph. Next, a Markov model is used to project the future security posture of the system. Finally, the framework is evaluated by applying it on a typical IT network scenario with specific services, network configurations, and vulnerabilities.

Barrere, M., Steiner, R. V., Mohsen, R., Lupu, E. C..  2017.  Tracking the Bad Guys: An Efficient Forensic Methodology to Trace Multi-Step Attacks Using Core Attack Graphs. 2017 13th International Conference on Network and Service Management (CNSM). :1–7.

In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold. Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.

Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S..  2017.  Accumulators with Applications to Anonymity-Preserving Revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :301–315.

Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.

Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

2018-03-05
Osaiweran, A., Marincic, J., Groote, J. F..  2017.  Assessing the Quality of Tabular State Machines through Metrics. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :426–433.

Software metrics are widely used to measure the quality of software and to give an early indication of the efficiency of the development process in industry. There are many well-established frameworks for measuring the quality of source code through metrics, but limited attention has been paid to the quality of software models. In this article, we evaluate the quality of state machine models specified using the Analytical Software Design (ASD) tooling. We discuss how we applied a number of metrics to ASD models in an industrial setting and report about results and lessons learned while collecting these metrics. Furthermore, we recommend some quality limits for each metric and validate them on models developed in a number of industrial projects.

Sultana, K. Z., Deo, A., Williams, B. J..  2017.  Correlation Analysis among Java Nano-Patterns and Software Vulnerabilities. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). :69–76.

Ensuring software security is essential for developing a reliable software. A software can suffer from security problems due to the weakness in code constructs during software development. Our goal is to relate software security with different code constructs so that developers can be aware very early of their coding weaknesses that might be related to a software vulnerability. In this study, we chose Java nano-patterns as code constructs that are method-level patterns defined on the attributes of Java methods. This study aims to find out the correlation between software vulnerability and method-level structural code constructs known as nano-patterns. We found the vulnerable methods from 39 versions of three major releases of Apache Tomcat for our first case study. We extracted nano-patterns from the affected methods of these releases. We also extracted nano-patterns from the non-vulnerable methods of Apache Tomcat, and for this, we selected the last version of three major releases (6.0.45 for release 6, 7.0.69 for release 7 and 8.0.33 for release 8) as the non-vulnerable versions. Then, we compared the nano-pattern distributions in vulnerable versus non-vulnerable methods. In our second case study, we extracted nano-patterns from the affected methods of three vulnerable J2EE web applications: Blueblog 1.0, Personalblog 1.2.6 and Roller 0.9.9, all of which were deliberately made vulnerable for testing purpose. We found that some nano-patterns such as objCreator, staticFieldReader, typeManipulator, looper, exceptions, localWriter, arrReader are more prevalent in affected methods whereas some such as straightLine are more vivid in non-affected methods. We conclude that nano-patterns can be used as the indicator of vulnerability-proneness of code.

Wang, W., Hussein, N., Gupta, A., Wang, Y..  2017.  A Regression Model Based Approach for Identifying Security Requirements in Open Source Software Development. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :443–446.

There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.

Medeiros, N., Ivaki, N., Costa, P., Vieira, M..  2017.  Software Metrics as Indicators of Security Vulnerabilities. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :216–227.

Detecting software security vulnerabilities and distinguishing vulnerable from non-vulnerable code is anything but simple. Most of the time, vulnerabilities remain undisclosed until they are exposed, for instance, by an attack during the software operational phase. Software metrics are widely-used indicators of software quality, but the question is whether they can be used to distinguish vulnerable software units from the non-vulnerable ones during development. In this paper, we perform an exploratory study on software metrics, their interdependency, and their relation with security vulnerabilities. We aim at understanding: i) the correlation between software architectural characteristics, represented in the form of software metrics, and the number of vulnerabilities; and ii) which are the most informative and discriminative metrics that allow identifying vulnerable units of code. To achieve these goals, we use, respectively, correlation coefficients and heuristic search techniques. Our analysis is carried out on a dataset that includes software metrics and reported security vulnerabilities, exposed by security attacks, for all functions, classes, and files of five widely used projects. Results show: i) a strong correlation between several project-level metrics and the number of vulnerabilities, ii) the possibility of using a group of metrics, at both file and function levels, to distinguish vulnerable and non-vulnerable code with a high level of accuracy.

2018-02-15
Sheppard, J. W., Strasser, S..  2017.  A factored evolutionary optimization approach to Bayesian abductive inference for multiple-fault diagnosis. 2017 IEEE AUTOTESTCON. :1–10.

When supporting commercial or defense systems, a perennial challenge is providing effective test and diagnosis strategies to minimize downtime, thereby maximizing system availability. Potentially one of the most effective ways to maximize downtime is to be able to detect and isolate as many faults in a system at one time as possible. This is referred to as the "multiple-fault diagnosis" problem. While several tools have been developed over the years to assist in performing multiple-fault diagnosis, considerable work remains to provide the best diagnosis possible. Recently, a new model for evolutionary computation has been developed called the "Factored Evolutionary Algorithm" (FEA). In this paper, we combine our prior work in deriving diagnostic Bayesian networks from static fault isolation manuals and fault trees with the FEA strategy to perform abductive inference as a way of addressing the multiple-fault diagnosis problem. We demonstrate the effectiveness of this approach on several networks derived from existing, real-world FIMs.

2018-02-06
Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R..  2017.  One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure Anonymous Attestation. 2017 IEEE Symposium on Security and Privacy (SP). :901–920.

The Trusted Platform Module (TPM) is an international standard for a security chip that can be used for the management of cryptographic keys and for remote attestation. The specification of the most recent TPM 2.0 interfaces for direct anonymous attestation unfortunately has a number of severe shortcomings. First of all, they do not allow for security proofs (indeed, the published proofs are incorrect). Second, they provide a Diffie-Hellman oracle w.r.t. the secret key of the TPM, weakening the security and preventing forward anonymity of attestations. Fixes to these problems have been proposed, but they create new issues: they enable a fraudulent TPM to encode information into an attestation signature, which could be used to break anonymity or to leak the secret key. Furthermore, all proposed ways to remove the Diffie-Hellman oracle either strongly limit the functionality of the TPM or would require significant changes to the TPM 2.0 interfaces. In this paper we provide a better specification of the TPM 2.0 interfaces that addresses these problems and requires only minimal changes to the current TPM 2.0 commands. We then show how to use the revised interfaces to build q-SDH-and LRSW-based anonymous attestation schemes, and prove their security. We finally discuss how to obtain other schemes addressing different use cases such as key-binding for U-Prove and e-cash.

2018-02-02
Huang, W., Bruck, J..  2016.  Secure RAID schemes for distributed storage. 2016 IEEE International Symposium on Information Theory (ISIT). :1401–1405.

We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal encoding and decoding complexities, from the EVENODD codes and B codes, which are array codes widely used in the RAID architecture. These schemes optimally tolerate two node failures and two eavesdropping nodes. For more general parameters, we construct efficient systematic secure RAID schemes from Reed-Solomon codes. Our results suggest that building “keyless”, information-theoretic security into the RAID architecture is practical.

2018-01-16
Rouf, Y., Shtern, M., Fokaefs, M., Litoiu, M..  2017.  A Hierarchical Architecture for Distributed Security Control of Large Scale Systems. 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). :118–120.

In the era of Big Data, software systems can be affected by its growing complexity, both with respect to functional and non-functional requirements. As more and more people use software applications over the web, the ability to recognize if some of this traffic is malicious or legitimate is a challenge. The traffic load of security controllers, as well as the complexity of security rules to detect attacks can grow to levels where current solutions may not suffice. In this work, we propose a hierarchical distributed architecture for security control in order to partition responsibility and workload among many security controllers. In addition, our architecture proposes a more simplified way of defining security rules to allow security to be enforced on an operational level, rather than a development level.

2018-01-10
Stoughton, A., Varia, M..  2017.  Mechanizing the Proof of Adaptive, Information-Theoretic Security of Cryptographic Protocols in the Random Oracle Model. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :83–99.

We report on our research on proving the security of multi-party cryptographic protocols using the EASYCRYPT proof assistant. We work in the computational model using the sequence of games approach, and define honest-butcurious (semi-honest) security using a variation of the real/ideal paradigm in which, for each protocol party, an adversary chooses protocol inputs in an attempt to distinguish the party's real and ideal games. Our proofs are information-theoretic, instead of being based on complexity theory and computational assumptions. We employ oracles (e.g., random oracles for hashing) whose encapsulated states depend on dynamically-made, nonprogrammable random choices. By limiting an adversary's oracle use, one may obtain concrete upper bounds on the distances between a party's real and ideal games that are expressed in terms of game parameters. Furthermore, our proofs work for adaptive adversaries, ones that, when choosing the value of a protocol input, may condition this choice on their current protocol view and oracle knowledge. We provide an analysis in EASYCRYPT of a three party private count retrieval protocol. We emphasize the lessons learned from completing this proof.

2017-12-28
Liu, H., Ditzler, G..  2017.  A fast information-theoretic approximation of joint mutual information feature selection. 2017 International Joint Conference on Neural Networks (IJCNN). :4610–4617.

Feature selection is an important step in data analysis to address the curse of dimensionality. Such dimensionality reduction techniques are particularly important when if a classification is required and the model scales in polynomial time with the size of the feature (e.g., some applications include genomics, life sciences, cyber-security, etc.). Feature selection is the process of finding the minimum subset of features that allows for the maximum predictive power. Many of the state-of-the-art information-theoretic feature selection approaches use a greedy forward search; however, there are concerns with the search in regards to the efficiency and optimality. A unified framework was recently presented for information-theoretic feature selection that tied together many of the works in over the past twenty years. The work showed that joint mutual information maximization (JMI) is generally the best options; however, the complexity of greedy search for JMI scales quadratically and it is infeasible on high dimensional datasets. In this contribution, we propose a fast approximation of JMI based on information theory. Our approach takes advantage of decomposing the calculations within JMI to speed up a typical greedy search. We benchmarked the proposed approach against JMI on several UCI datasets, and we demonstrate that the proposed approach returns feature sets that are highly consistent with JMI, while decreasing the run time required to perform feature selection.

Sultana, K. Z., Williams, B. J..  2017.  Evaluating micro patterns and software metrics in vulnerability prediction. 2017 6th International Workshop on Software Mining (SoftwareMining). :40–47.

Software security is an important aspect of ensuring software quality. Early detection of vulnerable code during development is essential for the developers to make cost and time effective software testing. The traditional software metrics are used for early detection of software vulnerability, but they are not directly related to code constructs and do not specify any particular granularity level. The goal of this study is to help developers evaluate software security using class-level traceable patterns called micro patterns to reduce security risks. The concept of micro patterns is similar to design patterns, but they can be automatically recognized and mined from source code. If micro patterns can better predict vulnerable classes compared to traditional software metrics, they can be used in developing a vulnerability prediction model. This study explores the performance of class-level patterns in vulnerability prediction and compares them with traditional class-level software metrics. We studied security vulnerabilities as reported for one major release of Apache Tomcat, Apache Camel and three stand-alone Java web applications. We used machine learning techniques for predicting vulnerabilities using micro patterns and class-level metrics as features. We found that micro patterns have higher recall in detecting vulnerable classes than the software metrics.

2017-12-12
Bhattacharjee, S. Das, Yuan, J., Jiaqi, Z., Tan, Y. P..  2017.  Context-aware graph-based analysis for detecting anomalous activities. 2017 IEEE International Conference on Multimedia and Expo (ICME). :1021–1026.

This paper proposes a context-aware, graph-based approach for identifying anomalous user activities via user profile analysis, which obtains a group of users maximally similar among themselves as well as to the query during test time. The main challenges for the anomaly detection task are: (1) rare occurrences of anomalies making it difficult for exhaustive identification with reasonable false-alarm rate, and (2) continuously evolving new context-dependent anomaly types making it difficult to synthesize the activities apriori. Our proposed query-adaptive graph-based optimization approach, solvable using maximum flow algorithm, is designed to fully utilize both mutual similarities among the user models and their respective similarities with the query to shortlist the user profiles for a more reliable aggregated detection. Each user activity is represented using inputs from several multi-modal resources, which helps to localize anomalies from time-dependent data efficiently. Experiments on public datasets of insider threats and gesture recognition show impressive results.

2017-12-04
Thayananthan, V., Abdulkader, O., Jambi, K., Bamahdi, A. M..  2017.  Analysis of Cybersecurity Based on Li-Fi in Green Data Storage Environments. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :327–332.

Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.

2017-11-27
Meng, Q., Shameng, Wen, Chao, Feng, Chaojing, Tang.  2016.  Predicting buffer overflow using semi-supervised learning. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1959–1963.

As everyone knows vulnerability detection is a very difficult and time consuming work, so taking advantage of the unlabeled data sufficiently is needed and helpful. According the above reality, in this paper a method is proposed to predict buffer overflow based on semi-supervised learning. We first employ Antlr to extract AST from C/C++ source files, then according to the 22 buffer overflow attributes taxonomies, a 22-dimension vector is extracted from every function in AST, at last, the vector is leveraged to train a classifier to predict buffer overflow vulnerabilities. The experiment and evaluation indicate our method is correct and efficient.